Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Look, J. Heat Transfer 101, 556 (1979).
    [CrossRef]
  2. D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
    [CrossRef]
  3. D. C. Look, P. D. Sundvold, “Anisotropic Two-Dimensional Scattering: II Finite Depth and Refractive Index Effects,” accepted AIAA J. (1983).
  4. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  5. D. C. Look, “Novel Use of Total Internal Reflection,” UMR Mechanical Engineering Department Report MAE-TM-1 (Feb.1981); A. J. Phys. 49, 794 (1981).
  6. S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
    [CrossRef]
  7. G. Delzelic, J. P. Kratohvil, J. Colloid Sci. 6, 561 (1961).
  8. J. G. Tripses, D. C. Look, Lett. Heat Mass Transfer 4, 129 (1977).
  9. A. L. Crosbie, U. Mo-Rolla; private communication.

1981 (1)

D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
[CrossRef]

1979 (1)

D. C. Look, J. Heat Transfer 101, 556 (1979).
[CrossRef]

1977 (1)

J. G. Tripses, D. C. Look, Lett. Heat Mass Transfer 4, 129 (1977).

1963 (1)

S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
[CrossRef]

1961 (1)

G. Delzelic, J. P. Kratohvil, J. Colloid Sci. 6, 561 (1961).

Crosbie, A. L.

D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
[CrossRef]

A. L. Crosbie, U. Mo-Rolla; private communication.

Delzelic, G.

G. Delzelic, J. P. Kratohvil, J. Colloid Sci. 6, 561 (1961).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kratohvil, J. P.

G. Delzelic, J. P. Kratohvil, J. Colloid Sci. 6, 561 (1961).

Look, D. C.

D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
[CrossRef]

D. C. Look, J. Heat Transfer 101, 556 (1979).
[CrossRef]

J. G. Tripses, D. C. Look, Lett. Heat Mass Transfer 4, 129 (1977).

D. C. Look, P. D. Sundvold, “Anisotropic Two-Dimensional Scattering: II Finite Depth and Refractive Index Effects,” accepted AIAA J. (1983).

D. C. Look, “Novel Use of Total Internal Reflection,” UMR Mechanical Engineering Department Report MAE-TM-1 (Feb.1981); A. J. Phys. 49, 794 (1981).

Maron, S. H.

S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
[CrossRef]

Nelson, H. F.

D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
[CrossRef]

Pierce, P. E.

S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
[CrossRef]

Sundvold, P. D.

D. C. Look, P. D. Sundvold, “Anisotropic Two-Dimensional Scattering: II Finite Depth and Refractive Index Effects,” accepted AIAA J. (1983).

Tripses, J. G.

J. G. Tripses, D. C. Look, Lett. Heat Mass Transfer 4, 129 (1977).

Ulevitch, I. N.

S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
[CrossRef]

J. Colloid Sci. (2)

S. H. Maron, P. E. Pierce, I. N. Ulevitch, J. Colloid Sci. 18, 470 (1963).
[CrossRef]

G. Delzelic, J. P. Kratohvil, J. Colloid Sci. 6, 561 (1961).

J. Heat Transfer (2)

D. C. Look, J. Heat Transfer 101, 556 (1979).
[CrossRef]

D. C. Look, H. F. Nelson, A. L. Crosbie, J. Heat Transfer 103, 127 (1981).
[CrossRef]

Lett. Heat Mass Transfer (1)

J. G. Tripses, D. C. Look, Lett. Heat Mass Transfer 4, 129 (1977).

Other (4)

A. L. Crosbie, U. Mo-Rolla; private communication.

D. C. Look, P. D. Sundvold, “Anisotropic Two-Dimensional Scattering: II Finite Depth and Refractive Index Effects,” accepted AIAA J. (1983).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

D. C. Look, “Novel Use of Total Internal Reflection,” UMR Mechanical Engineering Department Report MAE-TM-1 (Feb.1981); A. J. Phys. 49, 794 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental (symbols) and theoretical backscattered nondimensional intensities vs the radial optical thickness for double distilled water medium with a black bottom and 0.4414-μm incident light (●, 5 ml; ▲, 10 ml of spherical particles solution).

Fig. 2
Fig. 2

Experimental (symbols) and theoretical backscattered nondimensional intensities vs radial optical thickness for an ethylene glycol medium with a black bottom and 0.4414-μm incident light (●, 20 ml; ▲, 40 ml of spherical particle solution).

Fig. 3
Fig. 3

Experimental (symbols) and theoretical backscattered nondimensional intensities vs radial optical thickness for an optical depth parameter of 2, a black bottom, and 0.4414-μm incident light (●, 5 ml in water; ▲, 10 ml in water; ▼, 20 ml in ethylene glycol; ■, 40 ml in ethylene glycol).

Fig. 4
Fig. 4

Experimental (symbols) and theoretical backscattered nondimensional intensities vs radial optical thickness in an ethylene glycol medium for an optical depth parameter of 2 and a black bottom (●, 5 ml with 0.4414 μm; ▲, 10 ml with 0.4414 μm; ▼, 5 ml with 0.6328 μm; ■, 10 ml with 0.6328 μm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ = τ s + τ liq ,
τ s = η C s L .
τ 0 * = ( 1 - g ) τ 0 = ( 1 - g ) η C s Z .
( R R b ) 2 I I b = 538.86 v R b 2 10 - 6 / PL .

Metrics