Abstract

The small-signal gain of a cw optically pumped 12-μm NH3 system is investigated as a function of pump intensity, pressure, pump offset, and polarization using a tunable diode laser as a probe. In general, the experiment is found to be in good agreement with calculations based on the theory of two laser fields interacting with a three-level molecular system. Raman gains in excess of 3%/cm are obtained using a waveguide configuration. The significance of these findings is discussed in terms of designing an efficient and powerful cw 12-μm laser.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. E. Knight, “Ordered list of far-infrared laser lines (c.w., λ > 12 μm),” Nat. Phys. Lab. Rep. Qu. 45 (first revision) (Feb.1981).
  2. C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
    [CrossRef]
  3. C. Rolland, J. Reid, B. K. Garside, P. E. Jessop, H. D. Morrison, Opt. Lett. 8, 36 (1983).
    [CrossRef] [PubMed]
  4. C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
    [CrossRef]
  5. P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
    [CrossRef]
  6. M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
    [CrossRef]
  7. R. L. Panock, R. J. Temkin, IEEE J. Quantum Electron. QE-13, 425 (1977).
    [CrossRef]
  8. T. A. DeTemple, “Infrared and Millimeter Waves,” in Sources of Radiation, Vol. 1 (Academic, New York, 1979).
  9. J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
    [CrossRef]
  10. J. Heppner, U. Hubner, IEEE J. Quantum Electron. QE-16, 1093 (1980).
    [CrossRef]
  11. R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
    [CrossRef]
  12. S. Urban et al., J. Mol. Spectrosc. 88, 274 (1981).
    [CrossRef]
  13. K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
    [CrossRef]
  14. F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
    [CrossRef]
  15. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), p. 75.
  16. These populations were adjusted appropriately when gain calculations were carried out at elevated temperatures.
  17. The vibrational dipole moment was calculated from high-pressure absorption measurements on the sP(7,0) and sP(7,1) transitions using our 12-μm tunable diode laser and agrees with previous published values; see D. C. McKean, P. N. Schatz, J. Chem. Phys. 24, 316 (1956); T. Shimizu, F. O. Shimizu, R. Turner, T. Oka, J. Chem. Phys. 55, 2822 (1971).
    [CrossRef]
  18. This value is in good agreement with Taylor’s calculated value of 8.9 (±10%) MHz/Torr (HWHM) in Ref. 14.
  19. J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
    [CrossRef]
  20. M. M. T. Loy, Phys. Rev. Lett. 32, 814 (1974).
    [CrossRef]
  21. The peak Raman gain is slightly shifted from the Raman resonance condition due to the velocity integration.
  22. By tuning the diode laser to the sP(2,0) and sP(10,2) transitions in NH3, we were able to monitor absorption coefficient changes resulting from gas heating. The temperatures corresponding to these new absorption coefficients were then computed using the theoretical model.
  23. This temperature change was measured using the technique described above. Since the tunable diode laser probes the entire cross section of the waveguide, the temperature increase represents only an average over the radial temperature profile of the NH3 gas.
  24. S. J. Petuchowski, T. A. DeTemple, Opt. Lett. 6, 227 (1981).
    [CrossRef] [PubMed]
  25. D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
    [CrossRef]
  26. This conclusion is consistent with the results of a paper to be published by F. Julien, J.-M. Lourtioz, T. A. DeTemple in IEEE J. Quantum Electron. (Nov.1983), which deals with the theoretical modeling of a 12.08-μm ring laser.
  27. Recently, we have improved the performance of the waveguide laser to give an output power of 3 W at 12.08 μm from a 22-W pump. This corresponds to a photon conversion efficiency of 18%.

1983

1982

C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
[CrossRef]

C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
[CrossRef]

P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
[CrossRef]

1981

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

S. Urban et al., J. Mol. Spectrosc. 88, 274 (1981).
[CrossRef]

S. J. Petuchowski, T. A. DeTemple, Opt. Lett. 6, 227 (1981).
[CrossRef] [PubMed]

1980

D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
[CrossRef]

K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
[CrossRef]

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

J. Heppner, U. Hubner, IEEE J. Quantum Electron. QE-16, 1093 (1980).
[CrossRef]

1977

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

R. L. Panock, R. J. Temkin, IEEE J. Quantum Electron. QE-13, 425 (1977).
[CrossRef]

1974

M. M. T. Loy, Phys. Rev. Lett. 32, 814 (1974).
[CrossRef]

1973

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

1969

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

1956

The vibrational dipole moment was calculated from high-pressure absorption measurements on the sP(7,0) and sP(7,1) transitions using our 12-μm tunable diode laser and agrees with previous published values; see D. C. McKean, P. N. Schatz, J. Chem. Phys. 24, 316 (1956); T. Shimizu, F. O. Shimizu, R. Turner, T. Oka, J. Chem. Phys. 55, 2822 (1971).
[CrossRef]

Abdul-Halim, I.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

Carrozzi, A.

P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
[CrossRef]

DeTemple, T. A.

S. J. Petuchowski, T. A. DeTemple, Opt. Lett. 6, 227 (1981).
[CrossRef] [PubMed]

This conclusion is consistent with the results of a paper to be published by F. Julien, J.-M. Lourtioz, T. A. DeTemple in IEEE J. Quantum Electron. (Nov.1983), which deals with the theoretical modeling of a 12.08-μm ring laser.

T. A. DeTemple, “Infrared and Millimeter Waves,” in Sources of Radiation, Vol. 1 (Academic, New York, 1979).

Ducloy, M.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

Feld, M. S.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

Garside, B. K.

C. Rolland, J. Reid, B. K. Garside, P. E. Jessop, H. D. Morrison, Opt. Lett. 8, 36 (1983).
[CrossRef] [PubMed]

C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
[CrossRef]

C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
[CrossRef]

Heppner, J.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

J. Heppner, U. Hubner, IEEE J. Quantum Electron. QE-16, 1093 (1980).
[CrossRef]

Hubner, U.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

J. Heppner, U. Hubner, IEEE J. Quantum Electron. QE-16, 1093 (1980).
[CrossRef]

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

Iwahori, J.

K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
[CrossRef]

Javan, A.

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

Jessop, P. E.

Johnson, L. C.

D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
[CrossRef]

Julien, F.

This conclusion is consistent with the results of a paper to be published by F. Julien, J.-M. Lourtioz, T. A. DeTemple in IEEE J. Quantum Electron. (Nov.1983), which deals with the theoretical modeling of a 12.08-μm ring laser.

Knight, D. J. E.

D. J. E. Knight, “Ordered list of far-infrared laser lines (c.w., λ > 12 μm),” Nat. Phys. Lab. Rep. Qu. 45 (first revision) (Feb.1981).

Leite, J. R. R.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

Lourtioz, J.-M.

This conclusion is consistent with the results of a paper to be published by F. Julien, J.-M. Lourtioz, T. A. DeTemple in IEEE J. Quantum Electron. (Nov.1983), which deals with the theoretical modeling of a 12.08-μm ring laser.

Loy, M. M. T.

M. M. T. Loy, Phys. Rev. Lett. 32, 814 (1974).
[CrossRef]

Mansfield, D. K.

D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
[CrossRef]

Marx, R.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

McKean, D. C.

The vibrational dipole moment was calculated from high-pressure absorption measurements on the sP(7,0) and sP(7,1) transitions using our 12-μm tunable diode laser and agrees with previous published values; see D. C. McKean, P. N. Schatz, J. Chem. Phys. 24, 316 (1956); T. Shimizu, F. O. Shimizu, R. Turner, T. Oka, J. Chem. Phys. 55, 2822 (1971).
[CrossRef]

Minguzzi, P.

P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
[CrossRef]

Morrison, H. D.

Ni, Y-C.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

Panock, R. L.

R. L. Panock, R. J. Temkin, IEEE J. Quantum Electron. QE-13, 425 (1977).
[CrossRef]

Petuchowski, S. J.

Reid, J.

C. Rolland, J. Reid, B. K. Garside, P. E. Jessop, H. D. Morrison, Opt. Lett. 8, 36 (1983).
[CrossRef] [PubMed]

C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
[CrossRef]

C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
[CrossRef]

Rolland, C.

C. Rolland, J. Reid, B. K. Garside, P. E. Jessop, H. D. Morrison, Opt. Lett. 8, 36 (1983).
[CrossRef] [PubMed]

C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
[CrossRef]

C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
[CrossRef]

Sanchez, A.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

Schatz, P. N.

The vibrational dipole moment was calculated from high-pressure absorption measurements on the sP(7,0) and sP(7,1) transitions using our 12-μm tunable diode laser and agrees with previous published values; see D. C. McKean, P. N. Schatz, J. Chem. Phys. 24, 316 (1956); T. Shimizu, F. O. Shimizu, R. Turner, T. Oka, J. Chem. Phys. 55, 2822 (1971).
[CrossRef]

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), p. 75.

Schinn, G.

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

Seligson, D.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

Semet, A.

D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
[CrossRef]

Shimoda, K.

K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
[CrossRef]

Taylor, F. W.

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

Temkin, R. J.

R. L. Panock, R. J. Temkin, IEEE J. Quantum Electron. QE-13, 425 (1977).
[CrossRef]

Tonelli, M.

P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
[CrossRef]

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), p. 75.

Ueda, Y.

K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
[CrossRef]

Urban, S.

S. Urban et al., J. Mol. Spectrosc. 88, 274 (1981).
[CrossRef]

Weiss, C. O.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

Willenberg, G-D.

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

Appl. Phys.

K. Shimoda, Y. Ueda, J. Iwahori, Appl. Phys. 21, 181 (1980).
[CrossRef]

Appl. Phys. Lett.

C. Rolland, B. K. Garside, J. Reid, Appl. Phys. Lett. 40, 655 (1982).
[CrossRef]

D. K. Mansfield, A. Semet, L. C. Johnson, Appl. Phys. Lett. 37, 688 (1980).
[CrossRef]

IEEE J. Quantum Electron.

C. Rolland, J. Reid, B. K. Garside, IEEE J. Quantum Electron. QE-18, 182 (1982).
[CrossRef]

R. L. Panock, R. J. Temkin, IEEE J. Quantum Electron. QE-13, 425 (1977).
[CrossRef]

J. Heppner, C. O. Weiss, U. Hubner, G. Schinn, IEEE J. Quantum Electron. QE-16, 392 (1980).
[CrossRef]

J. Heppner, U. Hubner, IEEE J. Quantum Electron. QE-16, 1093 (1980).
[CrossRef]

R. Marx, U. Hubner, I. Abdul-Halim, J. Heppner, Y-C. Ni, G-D. Willenberg, C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
[CrossRef]

J. Chem. Phys.

The vibrational dipole moment was calculated from high-pressure absorption measurements on the sP(7,0) and sP(7,1) transitions using our 12-μm tunable diode laser and agrees with previous published values; see D. C. McKean, P. N. Schatz, J. Chem. Phys. 24, 316 (1956); T. Shimizu, F. O. Shimizu, R. Turner, T. Oka, J. Chem. Phys. 55, 2822 (1971).
[CrossRef]

J. Mol. Spectrosc.

S. Urban et al., J. Mol. Spectrosc. 88, 274 (1981).
[CrossRef]

P. Minguzzi, M. Tonelli, A. Carrozzi, J. Mol. Spectrosc. 96, 294 (1982).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

F. W. Taylor, J. Quant. Spectrosc. Radiat. Transfer 13, 1181 (1973).
[CrossRef]

Opt. Lett.

Phys. Rev.

M. S. Feld, A. Javan, Phys. Rev. 177, 540 (1969).
[CrossRef]

Phys. Rev. Lett.

J. R. R. Leite, M. Ducloy, A. Sanchez, D. Seligson, M. S. Feld, Phys. Rev. Lett. 39, 1465 (1977).
[CrossRef]

M. M. T. Loy, Phys. Rev. Lett. 32, 814 (1974).
[CrossRef]

Other

The peak Raman gain is slightly shifted from the Raman resonance condition due to the velocity integration.

By tuning the diode laser to the sP(2,0) and sP(10,2) transitions in NH3, we were able to monitor absorption coefficient changes resulting from gas heating. The temperatures corresponding to these new absorption coefficients were then computed using the theoretical model.

This temperature change was measured using the technique described above. Since the tunable diode laser probes the entire cross section of the waveguide, the temperature increase represents only an average over the radial temperature profile of the NH3 gas.

D. J. E. Knight, “Ordered list of far-infrared laser lines (c.w., λ > 12 μm),” Nat. Phys. Lab. Rep. Qu. 45 (first revision) (Feb.1981).

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), p. 75.

These populations were adjusted appropriately when gain calculations were carried out at elevated temperatures.

T. A. DeTemple, “Infrared and Millimeter Waves,” in Sources of Radiation, Vol. 1 (Academic, New York, 1979).

This value is in good agreement with Taylor’s calculated value of 8.9 (±10%) MHz/Torr (HWHM) in Ref. 14.

This conclusion is consistent with the results of a paper to be published by F. Julien, J.-M. Lourtioz, T. A. DeTemple in IEEE J. Quantum Electron. (Nov.1983), which deals with the theoretical modeling of a 12.08-μm ring laser.

Recently, we have improved the performance of the waveguide laser to give an output power of 3 W at 12.08 μm from a 22-W pump. This corresponds to a photon conversion efficiency of 18%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Simplified energy level diagram of NH3. The inset is a TDL scan of the NH3/CO2 absorption spectra taken near 1084.6 cm−1. The CO2 absorption is indicated by an arrow. The relevant energy levels of the transitions with the two smallest pump offsets are shown.

Fig. 2
Fig. 2

Schematic diagram of the apparatus. The pump CO2 beam is represented by a dashed line and the probe TDL beam by a solid line. Dichroic mirrors M1 and M2 transmit 90% of the 9-μm CO2 radiation and reflect 99% of the 12-μm beam. We probe either a large diameter cell or a waveguide capillary tube. The Freon cell is used to prevent residual CO2 radiation from reaching the HgCdTe detector.

Fig. 3
Fig. 3

TDL scan of the sP(7,0) and sP(7,1) transition in the presence of CO2 radiation. The two sharp spikes offset from the line center absorptions are the Raman transitions associated with the sP(7,0) and sP(7,1) lines. The pump and TDL probe beams are copropagating in a 60-cm long waveguide. Pump intensity is ~1 kW/cm2 at an NH3 pressure of ~0.8 Torr.

Fig. 4
Fig. 4

High-sensitivity differential scans of the sP(7,0) region taken to illustrate the frequency tuning of the Raman gain. The CO2 laser is chopped and the TDL beam synchronously detected. Results are shown as the CO2 laser is tuned from −25 to 50 MHz around the line center. The TDL signal in the bottom trace was expanded by a factor of 2. The measurements were made in the 26-cm open cell at an NH3 pressure of only ~300 mTorr to minimize pressure broadening.

Fig. 5
Fig. 5

Raman gain coefficient as a function of pump intensity measured in the waveguide at a constant pressure of 0.5 Torr. The best fit straight line through the data gives a slope of 3.04 × 10−5 cm W−1.

Fig. 6
Fig. 6

Raman gain coefficient as a function of NH3 pressure for the copropagating case. The low-pressure range is displayed in (a) and the high-pressure in (b).

Fig. 7
Fig. 7

Raman gain coefficient as a function of NH3 pressure for the counterpropagating case.

Tables (2)

Tables Icon

Table I NH3 Molecular Data for the Gain Model

Tables Icon

Table II Gain ratio vs Pump Offset

Metrics