Abstract

An industrial laser Doppler velocimeter has been developed for accurately measuring the velocity and length of moving surfaces. The instrument’s advanced optical and electronic design provides a large depth of field, high SNR, and large dynamic range making it very suitable to industrial process control applications.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mishina, T. Koyama, T. Asakura, Appl. Opt. 14, 2326 (1975).
    [CrossRef] [PubMed]
  2. S. L. Kaufman, “Measuring Surface Motion Using Dual-Beam LDV,” TSI Tech. Bull. (Oct.1980).
  3. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry (Academic, New York, 1976).
  4. J. H. C. Chan, E. A. Ballik, Appl. Opt. 14, 1839 (1975).
    [CrossRef] [PubMed]
  5. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 217–218.
  6. H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
    [CrossRef]
  7. G. E. Sommargren, J. Opt. Soc. Am. 65, 960 (1975).
    [CrossRef]

1980 (1)

S. L. Kaufman, “Measuring Surface Motion Using Dual-Beam LDV,” TSI Tech. Bull. (Oct.1980).

1975 (3)

1972 (1)

H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
[CrossRef]

Asakura, T.

Ballik, E. A.

Bossel, H. H.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
[CrossRef]

Chan, J. H. C.

Durst, F.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry (Academic, New York, 1976).

Hiller, W. J.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 217–218.

Kaufman, S. L.

S. L. Kaufman, “Measuring Surface Motion Using Dual-Beam LDV,” TSI Tech. Bull. (Oct.1980).

Koyama, T.

Meier, G. E. A.

H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
[CrossRef]

Melling, A.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry (Academic, New York, 1976).

Mishina, H.

Sommargren, G. E.

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 217–218.

Whitelaw, J. H.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry (Academic, New York, 1976).

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Phys. E (1)

H. H. Bossel, W. J. Hiller, G. E. A. Meier, J. Phys. E 5, 893 (1972).
[CrossRef]

TSI Tech. Bull. (1)

S. L. Kaufman, “Measuring Surface Motion Using Dual-Beam LDV,” TSI Tech. Bull. (Oct.1980).

Other (2)

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practices of Laser-Doppler Anemometry (Academic, New York, 1976).

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 217–218.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Differential Doppler.

Fig. 2
Fig. 2

Differential Doppler detector signals.

Fig. 3
Fig. 3

Schematic diagram of the velocimeter optical system.

Fig. 4
Fig. 4

Signal processing block diagram.

Fig. 5
Fig. 5

Parallel data processing scheme.

Fig. 6
Fig. 6

Standard deviation of velocity mesurements.

Fig. 7
Fig. 7

Schematic of frequency shifter.

Tables (3)

Tables Icon

Table I Sample Calibration Data

Tables Icon

Table II Length Measurement Data

Tables Icon

Table III Steel Mill Test Data

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = ( 1 / λ ) ( d ^ 1 - d ^ s ) · v ,
Δ ν 1 = ( 1 / λ ) ( d ^ 1 - d ^ s ) · v ,
Δ ν 2 = ( 1 / λ ) ( d ^ 2 - d ^ s ) · v .
Δ ν = Δ ν 2 - Δ ν 1 = ( 1 / λ ) ( d ^ 2 - d ^ 1 ) · v .
ν s = ( 2 / λ ) v p sin ψ ,
f ( k ) = f 1 ( k ) + i f 2 ( k )             0 k N - 1 ,
M ( j ) F 1 ( j ) 2 + F 2 ( j ) 2 2 = F ( j ) 2 + F ( N - j ) 2 4             0 j N - 1.

Metrics