Abstract

The propagation of a pulsed light beam through a medium containing absorbing aerosol droplets is considered. A previous analysis of the droplet temperature, including both vaporization and conductivity effects, is used to obtain for a monodisperse distribution of droplet radii the beam intensity and the droplet temperature along the path. For sufficiently long pulses, a vaporization front may be defined by the leading edge of the steady-state droplet temperature regime. The speed of the front is shown to vary for sufficiently large droplets approximately as the inverse fifth power of the droplet radius. Numerical calculations are given for the specific case of beam propagation through a medium containing absorbing water droplets.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription