Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Burke, G. J. Michon, IEEE Trans. Electron Devices ED-23, 189 (1976).
    [CrossRef]
  2. D. F. Barbe, Proc. IEEE 63, 38 (1975).
    [CrossRef]
  3. B. C. Kuo, Automatic Control Systems (Prentice-Hall, Englewood Cliffs, N.J., 1964).

1976 (1)

H. K. Burke, G. J. Michon, IEEE Trans. Electron Devices ED-23, 189 (1976).
[CrossRef]

1975 (1)

D. F. Barbe, Proc. IEEE 63, 38 (1975).
[CrossRef]

Barbe, D. F.

D. F. Barbe, Proc. IEEE 63, 38 (1975).
[CrossRef]

Burke, H. K.

H. K. Burke, G. J. Michon, IEEE Trans. Electron Devices ED-23, 189 (1976).
[CrossRef]

Kuo, B. C.

B. C. Kuo, Automatic Control Systems (Prentice-Hall, Englewood Cliffs, N.J., 1964).

Michon, G. J.

H. K. Burke, G. J. Michon, IEEE Trans. Electron Devices ED-23, 189 (1976).
[CrossRef]

IEEE Trans. Electron Devices (1)

H. K. Burke, G. J. Michon, IEEE Trans. Electron Devices ED-23, 189 (1976).
[CrossRef]

Proc. IEEE (1)

D. F. Barbe, Proc. IEEE 63, 38 (1975).
[CrossRef]

Other (1)

B. C. Kuo, Automatic Control Systems (Prentice-Hall, Englewood Cliffs, N.J., 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Unit impulse response of a CID detector with lagα = 20%.

Fig. 2
Fig. 2

Normalized frequency response of a CID detector as a function of lag from 0 to 60%.

Fig. 3
Fig. 3

Empirical frequency response of two InSb CID infrared detectors with lags of 10 and 30%, respectively, measured in the time domain.

Tables (1)

Tables Icon

Table I Two-Frequency Response Ratio vs Lag

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A s ( f ) = lim N n = 0 N 1 N a ( n T ) exp ( - j 2 π f n T ) ,
a ( n T ) = ( 1 - α ) { ( n - 1 ) T n T exp ( j 2 π f t ) d t + α ( n - 2 ) T ( n - 1 ) T exp ( j 2 π f t ) d t + α 2 ( n - 3 ) T ( n - 2 ) T exp ( j 2 π f t ) d t + } = ( 1 - α ) exp ( j 2 π f n T ) [ T exp ( - j π f T ) ] × sinc ( f T ) [ 1 - α exp ( - j 2 π f T ) ] ,
A ( f ) = ( 1 - α ) T 2 exp ( - j 2 π f T ) sinc 2 ( f T ) [ 1 - α exp ( - j 2 π f T ) ] .
A n ( f ) = A ( f ) A ( 0 ) = ( 1 - α ) sin 2 ( f T ) ( 1 - α ) 2 + 4 α sin 2 ( π f T ) .
R ( α , f 1 , f 2 ) = A ( f 1 , α ) A ( f 2 , α )

Metrics