Abstract

A method for attitude determination of spacecraft by means of an optical technique is presented in which a laser beam is transmitted from a ground station and detected by a TV camera on a satellite. The principle of determining three attitude parameters using the sequential multiple spot images of the laser beam transmitter appearing in the TV camera’s image plane is discussed briefly. Experiments of attitude determination by this method have been conducted, where a TV camera onboard the Japanese Engineering Test Satellite-3 (ETS-3) and a ground-based optical station were used. In the experiments, argon laser transmission from the earth to space and satellite observation by the optical system were done simultaneously. The attitude of this satellite, i.e., a set of pitch, roll, and yaw angles, was determined with high accuracy for some orbits, which permitted us to evaluate the three-axes attitude control system and some attitude control experiments of the satellite.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sepp, Appl. Opt. 14, 1719 (1975).
    [CrossRef] [PubMed]
  2. T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
    [CrossRef]
  3. T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981); T. Aruga, K. Ueda, T. Igarashi, Appl. Opt. 21, 2291 (1982).
    [CrossRef] [PubMed]
  4. J. L. Bufton, L. O. Caudill, T. E. McGunigal, J. Opt. Soc. Am. 69, 1180 (1979).
    [CrossRef]
  5. P. O. Minott, J. Opt. Soc. Am. 62, 885 (1972).
    [CrossRef]
  6. J. L. Bufton, Appl. Opt. 16, 2654 (1977).
    [CrossRef] [PubMed]
  7. H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.
  8. R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
    [CrossRef]
  9. D. L. Mackison, R. L. Gutshall, J. Spacecraft 10, 262 (1973).
    [CrossRef]
  10. K. Araki, T. Aruga, R. Hayashi to be submitted to Jpn. IECE Trans. Satel. Apl. Tech. (1984).
  11. T. Aruga, K. Araki, Appl. Opt. to be submitted.

1981 (1)

1979 (1)

1977 (2)

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

J. L. Bufton, Appl. Opt. 16, 2654 (1977).
[CrossRef] [PubMed]

1975 (2)

R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
[CrossRef]

G. Sepp, Appl. Opt. 14, 1719 (1975).
[CrossRef] [PubMed]

1973 (1)

D. L. Mackison, R. L. Gutshall, J. Spacecraft 10, 262 (1973).
[CrossRef]

1972 (1)

Adams, M. B.

R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
[CrossRef]

Araki, K.

K. Araki, T. Aruga, R. Hayashi to be submitted to Jpn. IECE Trans. Satel. Apl. Tech. (1984).

T. Aruga, K. Araki, Appl. Opt. to be submitted.

Aruga, T.

T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981); T. Aruga, K. Ueda, T. Igarashi, Appl. Opt. 21, 2291 (1982).
[CrossRef] [PubMed]

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.

K. Araki, T. Aruga, R. Hayashi to be submitted to Jpn. IECE Trans. Satel. Apl. Tech. (1984).

T. Aruga, K. Araki, Appl. Opt. to be submitted.

Bufton, J. L.

Caudill, L. O.

Grant, F. D.

R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
[CrossRef]

Gutshall, R. L.

D. L. Mackison, R. L. Gutshall, J. Spacecraft 10, 262 (1973).
[CrossRef]

Hayashi, R.

K. Araki, T. Aruga, R. Hayashi to be submitted to Jpn. IECE Trans. Satel. Apl. Tech. (1984).

Igarashi, T.

T. Aruga, T. Igarashi, Appl. Opt. 20, 2698 (1981); T. Aruga, K. Ueda, T. Igarashi, Appl. Opt. 21, 2291 (1982).
[CrossRef] [PubMed]

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.

Imai, F.

H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.

Mackison, D. L.

D. L. Mackison, R. L. Gutshall, J. Spacecraft 10, 262 (1973).
[CrossRef]

McGunigal, T. E.

Minott, P. O.

Sakagami, H.

H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.

Sepp, G.

White, R. L.

R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
[CrossRef]

Appl. Opt. (3)

IEEE Trans. Aerosp. Electron. Syst. (2)

T. Aruga, T. Igarashi, IEEE Trans. Aerosp. Electron. Syst. AES-13, 473 (1977).
[CrossRef]

R. L. White, M. B. Adams, F. D. Grant, IEEE Trans. Aerosp. Electron. Syst. AES-11, 195 (1975).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Spacecraft (1)

D. L. Mackison, R. L. Gutshall, J. Spacecraft 10, 262 (1973).
[CrossRef]

Other (3)

K. Araki, T. Aruga, R. Hayashi to be submitted to Jpn. IECE Trans. Satel. Apl. Tech. (1984).

T. Aruga, K. Araki, Appl. Opt. to be submitted.

H. Sakagami, F. Imai, T. Aruga, T. Igarashi, in Proceedings, Thirteenth Congress of International Astronautical Federation, Paris, IAF-82-32 (1982), pp. 1–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration of a ground station and a satellite.

Fig. 2
Fig. 2

Gimbaled mount/telescope–SIT camera system of the GOS.

Fig. 3
Fig. 3

Photograph of the TV camera onboard the ETS-3 satellite. One of the three channels was used in this work.

Fig. 4
Fig. 4

Photograph taken on the SIT camera monitor of the ground station telescope-A during the experiment of earth-to-space laser transmission on the evening of 17 Mar. 1983. The image of the ETS-3 satellite in the sunlight background and the laser beam scattered by the atmosphere appear in the photograph.

Fig. 5
Fig. 5

Example of sequential spot images of the laser beam transmitting point observed by the TV camera onboard the ETS-3 satellite. Three spot images [(a)–(c)] for 5-sec intervals are shown. Only a part (~⅓ × ⅓) of the satellite TV camera’s frame is shown for each to show the spot image clearly.

Fig. 6
Fig. 6

Another example of sequential spot images which was taken on a different day from that in Fig. 5.

Tables (2)

Tables Icon

Table I Parameters of the GOS Used for this Experiment

Tables Icon

Table II Main Characteristics of the TV Camera on the ETS-3 Satellite

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( X 0 Y 0 Z 0 ) = ( 0 0 1 0 - 1 0 1 0 0 ) ( cos L sin L 0 - sin L cos L 0 0 0 1 ) × ( 1 0 0 0 cos i sin i 0 - sin i cos i ) ( cos Ω sin Ω 0 - sin Ω cos Ω 0 0 0 1 ) ( X ¯ Y ¯ Z ¯ ) ,
Δ X = X 1 - X 2 Δ Y = Y 1 - Y 2 Δ Z = Z 1 - Z 2 } ,
( X 0 Y 0 Z 0 ) = ( cos β - sin β 0 sin β cos β 0 0 0 1 ) ( 1 0 0 0 cos ( 90 ° - α 2 ) - sin ( 90 ° - α 2 ) 0 sin ( 90 ° - α 2 ) cos ( 90 ° - α 2 ) ) × ( cos ( Θ g + λ 2 - 90 ° ) sin ( Θ g + λ 2 - 90 ° ) 0 - sin ( Θ g + λ 2 - 90 ° ) cos ( Θ g + λ 2 - 90 ° ) 0 0 0 1 ) ( X ¯ Y ¯ Z ¯ ) ,
X ¯ = Δ X Y ¯ = Δ Y Z ¯ = Δ Z } ,
( x y z ) = ( 1 0 0 0 cos θ sin θ 0 - sin θ cos θ ) ( cos ϕ 0 - sin ϕ 0 1 0 sin ϕ 0 cos ϕ ) × ( cos ψ sin ψ 0 - sin ψ cos ψ 0 0 0 1 ) ( X 0 Y 0 Z 0 ) .
( x ¯ y ¯ ) = ( l _ 0 z l _ 0 z ) ( - x - y ) ,
x ¯ = f ( θ , ϕ , ψ ) y ¯ = g ( θ , ϕ , ψ ) } .

Metrics