Abstract

The laser-induced fluorescence (LIF) of green plants was evaluated as a means of remotely detecting plant stress and determining plant type. Corn and soybeans were used as representatives of monocots and dicots, respectively, in these studies. The fluorescence spectra of several plant pigments was excited with a nitrogen laser emitting at 337 nm. Intact leaves from corn and soybeans also fluoresced using the nitrogen laser. The two plant species exhibited fluorescence spectra which had three maxima in common at 440, 690, and 740 nm. However, the relative intensities of these maxima were distinctly different for the two species. Soybeans had an additional slight maxima at 525 nm. Potassium deficiency in corn caused an increase in fluorescence at 690 and 740 nm. Simulated water stress in soybeans resulted in increased fluorescence at 440, 525, 690, and 740 nm. The inhibition of photosynthesis in soybeans by 3-(3-4-dichlorophenyl)-1-1-dimethyl urea (DCMU) gave increased fluorescence primarily at 690 and 740 nm. Chlorosis as occurring in senescent soybean leaves caused a decrease in fluorescence at 690 and 740 nm. These studies indicate that LIF measurements of plants offer the potential for remotely detecting certain types of stress condition and also for differentiating plant species.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Tucker, Remote Sensing Environ. 8, 127 (1979).
    [CrossRef]
  2. B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).
  3. E. I. Rabinowitch, J. Phys. Chem. 61, 870 (1957).
    [CrossRef]
  4. L. N. M. Duysens, Science 120, 353 (1954).
    [CrossRef] [PubMed]
  5. B. Kok, in Plant Biochemistry, J. Bonner, J. Varner, Eds. (Academic, New York, 1976), p. 854.
  6. W. R. Hemphill, at Nineteenth Congress of International Astronautics Federation, New York (1968).
  7. J. C. McFarlane et al., Appl. Opt. 19, 3287 (1980).
    [CrossRef] [PubMed]
  8. G. D. Hickman, R. B. Moore, Proc. Great Lakes Res. Conf. 13, 1 (1970).
  9. F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  10. F. E. Hoge, R. N. Swift, “Chesapeake Bay Plume Study,” NASA Conf. Publ. 2188 (1981), p. 349.
  11. E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
    [CrossRef]
  12. J. B. Thomas, in Primary Photoprocesses in Biology (Wiley, New York, 1965), p. 113.
  13. R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
    [CrossRef]
  14. J. S. Brown, M. R. Michel-Wolwertz, Biochem. Biophys. Acta 155, 288 (1968).
  15. E. Rabinowitch, in Photosynthesis, Vol. 1 (Interscience, New York, 1945), p. 383.
  16. J. E. McMurtrey, USDA Tech. Bull. 340 (1933).

1981 (3)

F. E. Hoge, R. N. Swift, “Chesapeake Bay Plume Study,” NASA Conf. Publ. 2188 (1981), p. 349.

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

C. J. Tucker, Remote Sensing Environ. 8, 127 (1979).
[CrossRef]

1977 (1)

E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
[CrossRef]

1970 (1)

G. D. Hickman, R. B. Moore, Proc. Great Lakes Res. Conf. 13, 1 (1970).

1968 (2)

R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
[CrossRef]

J. S. Brown, M. R. Michel-Wolwertz, Biochem. Biophys. Acta 155, 288 (1968).

1957 (1)

E. I. Rabinowitch, J. Phys. Chem. 61, 870 (1957).
[CrossRef]

1954 (1)

L. N. M. Duysens, Science 120, 353 (1954).
[CrossRef] [PubMed]

1933 (1)

J. E. McMurtrey, USDA Tech. Bull. 340 (1933).

Brach, E. J.

E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
[CrossRef]

Brown, J. S.

J. S. Brown, M. R. Michel-Wolwertz, Biochem. Biophys. Acta 155, 288 (1968).

Chapman, D.

R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
[CrossRef]

Cheery, R. J.

R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
[CrossRef]

Duysens, L. N. M.

L. N. M. Duysens, Science 120, 353 (1954).
[CrossRef] [PubMed]

Hemphill, W. R.

W. R. Hemphill, at Nineteenth Congress of International Astronautics Federation, New York (1968).

Hickman, G. D.

G. D. Hickman, R. B. Moore, Proc. Great Lakes Res. Conf. 13, 1 (1970).

Hoge, F. E.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Chesapeake Bay Plume Study,” NASA Conf. Publ. 2188 (1981), p. 349.

Jasmin, J. H.

E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
[CrossRef]

Kimes, D. S.

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

Kok, B.

B. Kok, in Plant Biochemistry, J. Bonner, J. Varner, Eds. (Academic, New York, 1976), p. 854.

Langelar, J.

R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
[CrossRef]

Markham, B. L.

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

McFarlane, J. C.

McMurtrey, J. E.

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

J. E. McMurtrey, USDA Tech. Bull. 340 (1933).

Michel-Wolwertz, M. R.

J. S. Brown, M. R. Michel-Wolwertz, Biochem. Biophys. Acta 155, 288 (1968).

Molnar, J. M.

E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
[CrossRef]

Moore, R. B.

G. D. Hickman, R. B. Moore, Proc. Great Lakes Res. Conf. 13, 1 (1970).

Rabinowitch, E.

E. Rabinowitch, in Photosynthesis, Vol. 1 (Interscience, New York, 1945), p. 383.

Rabinowitch, E. I.

E. I. Rabinowitch, J. Phys. Chem. 61, 870 (1957).
[CrossRef]

Swift, R. N.

F. E. Hoge, R. N. Swift, “Chesapeake Bay Plume Study,” NASA Conf. Publ. 2188 (1981), p. 349.

F. E. Hoge, R. N. Swift, Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

Thomas, J. B.

J. B. Thomas, in Primary Photoprocesses in Biology (Wiley, New York, 1965), p. 113.

Tucker, C. J.

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

C. J. Tucker, Remote Sensing Environ. 8, 127 (1979).
[CrossRef]

Appl. Opt. (2)

Biochem. Biophys. Acta (1)

J. S. Brown, M. R. Michel-Wolwertz, Biochem. Biophys. Acta 155, 288 (1968).

J. Agric. Eng. Res. (1)

E. J. Brach, J. M. Molnar, J. H. Jasmin, J. Agric. Eng. Res. 22, 45 (1977).
[CrossRef]

J. Phys. Chem. (1)

E. I. Rabinowitch, J. Phys. Chem. 61, 870 (1957).
[CrossRef]

NASA Conf. Publ. 2188 (1)

F. E. Hoge, R. N. Swift, “Chesapeake Bay Plume Study,” NASA Conf. Publ. 2188 (1981), p. 349.

Photogram. Eng. Remote Sensing (1)

B. L. Markham, D. S. Kimes, C. J. Tucker, J. E. McMurtrey, Photogram. Eng. Remote Sensing 48, 1599 (1981).

Proc. Great Lakes Res. Conf. (1)

G. D. Hickman, R. B. Moore, Proc. Great Lakes Res. Conf. 13, 1 (1970).

Remote Sensing Environ. (1)

C. J. Tucker, Remote Sensing Environ. 8, 127 (1979).
[CrossRef]

Science (1)

L. N. M. Duysens, Science 120, 353 (1954).
[CrossRef] [PubMed]

Trans. Faraday Soc. (1)

R. J. Cheery, D. Chapman, J. Langelar, Trans. Faraday Soc. 64, 2304 (1968).
[CrossRef]

USDA Tech. Bull. 340 (1)

J. E. McMurtrey, USDA Tech. Bull. 340 (1933).

Other (4)

E. Rabinowitch, in Photosynthesis, Vol. 1 (Interscience, New York, 1945), p. 383.

B. Kok, in Plant Biochemistry, J. Bonner, J. Varner, Eds. (Academic, New York, 1976), p. 854.

W. R. Hemphill, at Nineteenth Congress of International Astronautics Federation, New York (1968).

J. B. Thomas, in Primary Photoprocesses in Biology (Wiley, New York, 1965), p. 113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Laboratory configuration for LIF experiments.

Fig. 2
Fig. 2

Emission curve of standard tungsten lamp vs emission curve as measured by monochromator–photomultiplier system.

Fig. 3
Fig. 3

LIF spectra of purified plant pigments. With the exception of NADH, all were dissolved in 1:1 ethanol–glycerol. NADH was dissolved in H2O. The pigment concentrations were adjusted to give approximately equal peak intensities.

Fig. 4
Fig. 4

LIF spectra of corn and soybeans six weeks after emergence.

Fig. 5
Fig. 5

Effect of dilution of soybean leaf homogenate on the ratio of fluorescence at 690 nm to that of 740 nm.

Fig. 6
Fig. 6

Effect of senescence on the fluorescence of soybeans leaves.

Fig. 7
Fig. 7

Effect of potassium deficiency on fluorescence spectra of corn.

Fig. 8
Fig. 8

Effect of dehydration on fluorescence of soybean leaves.

Fig. 9
Fig. 9

Effect of DCMU on fluorescence spectra of soybean leaf.

Metrics