Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  2. F. G. Fernald, in Proceedings, Eleventh International Laser Radar Conference, Madison Wisc. (June1982), p. 213.
  3. U.S. Standard Atmosphere 1976 (U.S. GPO, Washington, D.C., 1976).
  4. V. E. Zuev, Laser Beams in the Atmosphere, translated by J. S. Wood (Consultants Bureau, New York, 1982).
    [CrossRef]
  5. R. Penndorf, J. Opt. Soc. Am. 47, 176 (1957).
    [CrossRef]
  6. D. C. Knauss, Appl. Opt. 21, 4194 (1982).
    [CrossRef] [PubMed]

1982 (1)

1981 (1)

1957 (1)

Fernald, F. G.

F. G. Fernald, in Proceedings, Eleventh International Laser Radar Conference, Madison Wisc. (June1982), p. 213.

Klett, J. D.

Knauss, D. C.

Penndorf, R.

Zuev, V. E.

V. E. Zuev, Laser Beams in the Atmosphere, translated by J. S. Wood (Consultants Bureau, New York, 1982).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Other (3)

F. G. Fernald, in Proceedings, Eleventh International Laser Radar Conference, Madison Wisc. (June1982), p. 213.

U.S. Standard Atmosphere 1976 (U.S. GPO, Washington, D.C., 1976).

V. E. Zuev, Laser Beams in the Atmosphere, translated by J. S. Wood (Consultants Bureau, New York, 1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Aerosol extinction coefficient profiles. Model profile with S1 = 50 and T = 10; solution profiles with S1 = 90 and 8.5 (=S2). Boundary values are correctly given.

Fig. 2
Fig. 2

Reconstruction errors for the cases of T = 5 (solid curve) and T = 20 (dotted curve). From the top to the bottom, the contour maps represent the results corresponding to the conditions that S = 8.5 (Klett’s solution), 30, 60, 90. The abscissa is the ratio of the assumed boundary value to the true one, and the ordinate is the true extinction/backscatter ratio in the model. Figures in the contour map are relative errors (in percent).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α 1 ( z ) = S 1 S 2 α 2 ( z ) + X ( z ) exp [ 2 ( S 1 S 2 - 1 ) z z c α 2 ( z ) d z ] X ( z c ) α 1 ( z c ) + S 1 S 2 α 2 ( z c ) + 2 z z c X ( z ) exp [ 2 ( S 1 S 2 - 1 ) z z c α 2 ( z ) d z ] d z ,
α ^ 1 ( z ) = T · α 2 · [ 1 + A sin ( 2 π z L + φ ) ] , β ^ 1 ( z ) = α ^ 1 ( z ) / S ^ 1 ,
= 1 N i = 1 N [ α 1 ( z i ) - α ^ 1 ( z i ) ] 2 1 N i = 1 N α ^ 1 ( z i ) .
I ( S 1 ) = 1 ( S ^ 1 , S 1 ) P ( S ^ 1 ) d S ^ 1 ,
X ( z i c ) ¯ = [ 1 M i = i 1 i 2 X ( z i ) exp ( 2 · α ¯ · Z i ) ] exp ( - 2 · α ¯ · z i c ) ,

Metrics