Abstract

The performance of light intensity modulation using guided-to-radiation mode coupling through the electrooptic effect is investigated theoretically and experimentally. We show that high modulation efficiency is obtainable if a heterostructure waveguide is employed that has appropriate refractive indices to bring forth large field overlap of the two coupled modes. Waveguides of Nb2O5 or Li(Nb0.1Ta0.9)O3 film on a structure could have modulation efficiency of more than 100 dB/cm. The experiment was LiTaO3 substrate carried out in a Nb2O5–LiTaO3 structure fabricated by rf reactive sputtering, and we obtained the measured modulation depth as high as 45 dB/cm at an applied voltage of 400 V across 55-μm gap electrodes.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
    [CrossRef]
  2. D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
    [CrossRef]
  3. Y. K. Lee, S. Wang, IEEE J. Quantum Electron. QE-12, 273 (1976).
  4. S. Yamamoto, Y. Okamura, J. Appl. Phys. 50, 2555 (1979).
    [CrossRef]
  5. M. Nakajima, H. Onodera, I. Awai, J. Ikenoue, Appl. Opt. 20, 2439 (1981).
    [CrossRef] [PubMed]
  6. M. Nakajima, H. Onodera, J. Ikenoue, Radio Sci. 17, 117 (1982).
    [CrossRef]
  7. R. L. Aagard, Appl. Phys. Lett. 27, 605 (1975).
    [CrossRef]
  8. P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
    [CrossRef]
  9. S. Miyazawa, N. Uchida, Opt. Quantum Electron. 7, 451 (1975).
    [CrossRef]
  10. H. Onodera, I. Awai, J. Ikenoue, Appl. Opt. 22, 1194 (1983).
    [CrossRef] [PubMed]
  11. W. Kern, D. A. Puotinen, RCA Rev. 31, 187 (1970).

1983 (1)

1982 (1)

M. Nakajima, H. Onodera, J. Ikenoue, Radio Sci. 17, 117 (1982).
[CrossRef]

1981 (1)

1979 (1)

S. Yamamoto, Y. Okamura, J. Appl. Phys. 50, 2555 (1979).
[CrossRef]

1976 (1)

Y. K. Lee, S. Wang, IEEE J. Quantum Electron. QE-12, 273 (1976).

1975 (3)

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

S. Miyazawa, N. Uchida, Opt. Quantum Electron. 7, 451 (1975).
[CrossRef]

R. L. Aagard, Appl. Phys. Lett. 27, 605 (1975).
[CrossRef]

1974 (1)

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

1972 (1)

S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
[CrossRef]

1970 (1)

W. Kern, D. A. Puotinen, RCA Rev. 31, 187 (1970).

Aagard, R. L.

R. L. Aagard, Appl. Phys. Lett. 27, 605 (1975).
[CrossRef]

Awai, I.

Ballman, A. A.

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

Brown, H.

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

Crow, J. D.

S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
[CrossRef]

Ikenoue, J.

Kern, W.

W. Kern, D. A. Puotinen, RCA Rev. 31, 187 (1970).

Lee, Y. K.

Y. K. Lee, S. Wang, IEEE J. Quantum Electron. QE-12, 273 (1976).

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

Martin, R. J.

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

Miyazawa, S.

S. Miyazawa, N. Uchida, Opt. Quantum Electron. 7, 451 (1975).
[CrossRef]

Nakajima, M.

Okamura, Y.

S. Yamamoto, Y. Okamura, J. Appl. Phys. 50, 2555 (1979).
[CrossRef]

Onodera, H.

Puotinen, D. A.

W. Kern, D. A. Puotinen, RCA Rev. 31, 187 (1970).

Riva-Sanseverino, S.

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

Shah, M.

S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
[CrossRef]

Tien, P. K.

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

Uchida, N.

S. Miyazawa, N. Uchida, Opt. Quantum Electron. 7, 451 (1975).
[CrossRef]

Wang, S.

Y. K. Lee, S. Wang, IEEE J. Quantum Electron. QE-12, 273 (1976).

S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
[CrossRef]

Yamamoto, S.

S. Yamamoto, Y. Okamura, J. Appl. Phys. 50, 2555 (1979).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. L. Aagard, Appl. Phys. Lett. 27, 605 (1975).
[CrossRef]

P. K. Tien, S. Riva-Sanseverino, R. J. Martin, A. A. Ballman, H. Brown, Appl. Phys. Lett. 24, 503 (1974).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

Y. K. Lee, S. Wang, IEEE J. Quantum Electron. QE-12, 273 (1976).

J. Appl. Phys. (2)

S. Yamamoto, Y. Okamura, J. Appl. Phys. 50, 2555 (1979).
[CrossRef]

S. Wang, M. Shah, J. D. Crow, J. Appl. Phys. 43, 1861 (1972).
[CrossRef]

Opt. Quantum Electron. (1)

S. Miyazawa, N. Uchida, Opt. Quantum Electron. 7, 451 (1975).
[CrossRef]

Radio Sci. (1)

M. Nakajima, H. Onodera, J. Ikenoue, Radio Sci. 17, 117 (1982).
[CrossRef]

RCA Rev. (1)

W. Kern, D. A. Puotinen, RCA Rev. 31, 187 (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of the light intensity modulator and the coordinate system used in this paper.

Fig. 2
Fig. 2

Ranges of guided and radiation modes for TE and TM polarization.

Fig. 3
Fig. 3

Modulation efficiency as a function of the extraordinary refractive index of the film as a parameter of ordinary refractive indices of 2.20, 2.25, 2.30. At any point, the thickness of the film is determined to give the maximum modulation efficiency. The dotted line represents isotropic film.

Fig. 4
Fig. 4

Field distribution of the TE guided and TM radiation modes: (a) point A, (b) point B, (c) point C in Fig. 3, respectively.

Fig. 5
Fig. 5

Modulation efficiency as a function of film thickness d for the Nb2O5–LiTaO3 structure.

Fig. 6
Fig. 6

Power variation of the TE0 guided mode as a function of propagation distance z for the Nb2O5–LiTaO3 structure. Curves A, B, and C correspond to points A, B, and C in Fig. 5, respectively.

Fig. 7
Fig. 7

Modulation efficiency as a function of film thickness d for the Li(Nb0.1,Ta0.9)O3–LiTaO3 structure.

Fig. 8
Fig. 8

Refractive index and deposition rate of Nb2O5 film as a function of total pressure.

Fig. 9
Fig. 9

Modulation efficiency as a function of refractive index and thickness of the film.

Fig. 10
Fig. 10

Modulation characteristic of waveguide 1. The two curves differ according to the polarity of the applied voltage.

Tables (1)

Tables Icon

Table I Fabrication Conditions of the Waveguides and Their Modulation Characteristics

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 α = 2 π n o s 2 n e s 2 K e m 2 β ρ ,
K e m = j ω 4 P - 0 ɛ x y E y TE E x TM * d x , ɛ x y = ɛ 0 n o 2 n e 2 r 51 E m ,
E m = E 0 exp ( x / D ) ,             D = a / 0.8 ,             a , electrode separation ,
θ = tan - 1 ( κ Δ ) - tan - 1 ( 1 n f 2 κ Δ ) ,
ɛ x y = ɛ y x = ɛ 0 n 0 2 n e 2 r 51 E m - ɛ 0 ( n e 2 - n o 2 ) ϕ .

Metrics