Abstract

Volumetric thermal gratings were created in liquid and gaseous media and were used to efficiently deflect laser beams. In gaseous media, a low-input energy requirement and high switching efficiency make this type of switch a good candidate for a practical device. The switch is scalable to large apertures and has low insertion loss.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler et al., “Thermal Phase Gratings Induced by Laser Light”, Z. Agnew. Phys. 31, 1 (1971).
  2. R. H. Enns, S. S. Rangnekar, Can. J. Phys. 52, 99 (1974).
  3. R. S. Hargrove, “Thermo-Optically Induced Phase Gratings for Switching Optical Beams,” Lawrence Livermore National Laboratory Internal Memo AL77-333, March1977.
  4. D. W. Pohl, IBM J. Res. Dev. 23, 605 (1979).
    [CrossRef]
  5. K. Chiang, M. D. Levenson, Appl. Phys. 29, 23 (1982).
    [CrossRef]
  6. P. Y. Key et al., IEEE J. Quantum Electron. QE-6, 641, 1970.
    [CrossRef]
  7. G. T. Sincerbox, G. RoosenAppl. Opt. 22, 690 (1983).
    [CrossRef] [PubMed]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap. XII.
  9. H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).
  10. A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
    [CrossRef]
  11. R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).
    [CrossRef]
  12. J. Goldhar, J. R. Murray, IEEE J. Quantum Electron. QE-18, 399 (1982).
    [CrossRef]
  13. B. I. Zeldovich, I. I. Sobelman, Sov. Phys. Usp. 13, 307 (1971).
    [CrossRef]
  14. V. S. Zuev, E. P. Orlov, Sov. J. Quant. Electron 111191 (1981).
    [CrossRef]
  15. Ya. B. Zeldovich, Yu. P. RaizerPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic, New York, 1966), p. 2.
  16. J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
    [CrossRef]
  17. Z. Bor, IEEE J. Quantum Electron. QE-16, 520 (1980).

1983 (1)

1982 (2)

K. Chiang, M. D. Levenson, Appl. Phys. 29, 23 (1982).
[CrossRef]

J. Goldhar, J. R. Murray, IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

1981 (1)

V. S. Zuev, E. P. Orlov, Sov. J. Quant. Electron 111191 (1981).
[CrossRef]

1980 (2)

J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
[CrossRef]

Z. Bor, IEEE J. Quantum Electron. QE-16, 520 (1980).

1979 (1)

D. W. Pohl, IBM J. Res. Dev. 23, 605 (1979).
[CrossRef]

1978 (1)

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

1977 (1)

1974 (1)

R. H. Enns, S. S. Rangnekar, Can. J. Phys. 52, 99 (1974).

1971 (2)

H. J. Eichler et al., “Thermal Phase Gratings Induced by Laser Light”, Z. Agnew. Phys. 31, 1 (1971).

B. I. Zeldovich, I. I. Sobelman, Sov. Phys. Usp. 13, 307 (1971).
[CrossRef]

1970 (1)

P. Y. Key et al., IEEE J. Quantum Electron. QE-6, 641, 1970.
[CrossRef]

1969 (1)

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

Bor, Z.

Z. Bor, IEEE J. Quantum Electron. QE-16, 520 (1980).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap. XII.

Chiang, K.

K. Chiang, M. D. Levenson, Appl. Phys. 29, 23 (1982).
[CrossRef]

Eichler, H. J.

H. J. Eichler et al., “Thermal Phase Gratings Induced by Laser Light”, Z. Agnew. Phys. 31, 1 (1971).

Enns, R. H.

R. H. Enns, S. S. Rangnekar, Can. J. Phys. 52, 99 (1974).

Goldhar, J.

J. Goldhar, J. R. Murray, IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
[CrossRef]

Hargrove, R. S.

R. S. Hargrove, “Thermo-Optically Induced Phase Gratings for Switching Optical Beams,” Lawrence Livermore National Laboratory Internal Memo AL77-333, March1977.

Hellwarth, R. W.

Key, P. Y.

P. Y. Key et al., IEEE J. Quantum Electron. QE-6, 641, 1970.
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

Levenson, M. D.

K. Chiang, M. D. Levenson, Appl. Phys. 29, 23 (1982).
[CrossRef]

Murray, J. R.

J. Goldhar, J. R. Murray, IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
[CrossRef]

Orlov, E. P.

V. S. Zuev, E. P. Orlov, Sov. J. Quant. Electron 111191 (1981).
[CrossRef]

Pohl, D. W.

D. W. Pohl, IBM J. Res. Dev. 23, 605 (1979).
[CrossRef]

Raizer, Yu. P.

Ya. B. Zeldovich, Yu. P. RaizerPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic, New York, 1966), p. 2.

Rangnekar, S. S.

R. H. Enns, S. S. Rangnekar, Can. J. Phys. 52, 99 (1974).

Rappaport, W. R.

J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
[CrossRef]

Roosen, G.

Sincerbox, G. T.

Sobelman, I. I.

B. I. Zeldovich, I. I. Sobelman, Sov. Phys. Usp. 13, 307 (1971).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap. XII.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

Zeldovich, B. I.

B. I. Zeldovich, I. I. Sobelman, Sov. Phys. Usp. 13, 307 (1971).
[CrossRef]

Zeldovich, Ya. B.

Ya. B. Zeldovich, Yu. P. RaizerPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic, New York, 1966), p. 2.

Zuev, V. S.

V. S. Zuev, E. P. Orlov, Sov. J. Quant. Electron 111191 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

K. Chiang, M. D. Levenson, Appl. Phys. 29, 23 (1982).
[CrossRef]

Bell Sys. Tech. J. (1)

H. Kogelnik, Bell Sys. Tech. J. 48, 2909 (1969).

Can. J. Phys. (1)

R. H. Enns, S. S. Rangnekar, Can. J. Phys. 52, 99 (1974).

IBM J. Res. Dev. (1)

D. W. Pohl, IBM J. Res. Dev. 23, 605 (1979).
[CrossRef]

IEEE J. Quantum Electron. (5)

P. Y. Key et al., IEEE J. Quantum Electron. QE-6, 641, 1970.
[CrossRef]

A. Yariv, IEEE J. Quantum Electron. QE-14, 650 (1978).
[CrossRef]

J. Goldhar, J. R. Murray, IEEE J. Quantum Electron. QE-18, 399 (1982).
[CrossRef]

J. Goldhar, W. R. Rappaport, J. R. Murray, IEEE J. Quantum Electron. QE-16, 235 (1980).
[CrossRef]

Z. Bor, IEEE J. Quantum Electron. QE-16, 520 (1980).

J. Opt. Soc. Am. (1)

Sov. J. Quant. Electron (1)

V. S. Zuev, E. P. Orlov, Sov. J. Quant. Electron 111191 (1981).
[CrossRef]

Sov. Phys. Usp. (1)

B. I. Zeldovich, I. I. Sobelman, Sov. Phys. Usp. 13, 307 (1971).
[CrossRef]

Z. Agnew. Phys. (1)

H. J. Eichler et al., “Thermal Phase Gratings Induced by Laser Light”, Z. Agnew. Phys. 31, 1 (1971).

Other (3)

R. S. Hargrove, “Thermo-Optically Induced Phase Gratings for Switching Optical Beams,” Lawrence Livermore National Laboratory Internal Memo AL77-333, March1977.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), Chap. XII.

Ya. B. Zeldovich, Yu. P. RaizerPhysics of Shock Waves and High-Temperature Hydrodynamic Phenomena, (Academic, New York, 1966), p. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Beam deflecting switch based on volumetric thermal grating.

Fig. 2
Fig. 2

Angles and axis used in the text.

Fig. 3
Fig. 3

Switching efficiency vs angular detuning for 2-cm thick cell (a) α = 1 cm−1, (b) α = 0.5 cm−1, (c) α = 0.25 cm−1.

Fig. 4
Fig. 4

Allowed and forbidden regions in the parameter space for transient volumetric thermal gratings.

Fig. 5
Fig. 5

Deflection of 6328-Å beam by thermal grating formed by KrF laser in chloroform.

Fig. 6
Fig. 6

Intensity of 6328-Agac beam deflected by thermal grating in 1 atm of xenon and 50 torr CF3I.

Fig. 7
Fig. 7

Propagation of expanding 580-nm beam through volumetric phase grating.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + n 1 cos ( K · r )
E = z ^ E 0 n = - A n ( y ) exp [ - i ( k 0 - n K ) · r + i ω t ] .
( 2 - n 2 c 2 2 t 2 ) E = 0
- 2 i y ^ · ( k 0 - n K ) A n + ( k 0 2 - k 0 - n K 2 ) A n + 2 q k 0 ( A n + 1 + A n - 1 ) = 0 ,
c 0 A 0 = - i q A 1 , c 1 A 1 + i δ A 1 = - i q A 0 ,
c 0 = cos θ , c 1 = cos θ + K k 0 sin ϕ , δ = k 0 2 - k 0 - K 2 2 k 0 .
A 1 ( y ) 2 = sin 2 ( ν 2 + ζ 2 ) 1 / 2 1 + ζ 2 / ν 2 ,
ν = π n 1 y λ ( c 0 c 1 ) 1 / 2 and ζ = δ y 2 c 1 .
A 1 ( y ) = sin 2 ν .
n 1 ( y ) = n 1 ( 0 ) exp ( - α y ) ,
ν = π λ ( c 0 c 1 ) 1 / 2 0 y n 1 ( y ) d y .
A 2 + i Δ A 2 = - i q A 1 , A - 1 + i Δ A - 1 = - i q A 0 ,
A 2 = - i q 0 d exp ( - i Δ y ) A 1 ( y ) d y ,
A 2 2 α 2 16 Λ 4 λ 2 .
2 ρ t 2 - v s 2 2 ρ = - v s 2 ρ 0 c p ( ρ T ) p 2 d t Q ( r , t ) ,
Q ( r , t ) = q ( y , t ) ( 1 - cos K x ) ,
ρ ( r , t ) = ρ 0 + R ( y , t ) cos K x
2 R t 2 + ω 2 R = A 0 t q ( t ) d t ,
A = ω 2 ρ 0 c p ( ρ T ) p .
R ( t ) = 0 t q ( t ) d t ρ 0 c p ( ρ T ) p ,
R ( t ) = 0 t q ( t ) d t ρ 0 c p ( ρ T ) p ( 1 - cos ω t ) .
Δ n = ( n T ) p Δ T + ( n ρ ) T Δ ρ .
( n ρ ) T = ( n - 1 ) ( n + 1 ) ( n 2 + 2 ) 6 ρ 0 n .
| Δ n ( y ) d y | = λ 2 .
E = q ( t ) d t = λ 4 - ρ 0 c p ( ρ T ) p ( n ρ ) T .
C F 3 I + h ν C F 3 + I * .

Metrics