Abstract

A new lidar technique for measuring the profiles of backscatter ratio, atmospheric visibility, and atmospheric temperature is proposed. Based on the theory of high resolution Rayleigh/Mie scattering, the feasibility and advantages of using atomic vapor cells as blocking filters for measuring atmospheric parameters are demonstrated with a numerical example worked out in detail. Ten percent accuracy in determining backscatter ratio and visibility can be achieved easily. With a SNR of 300, temperature of 1 K accuracy can be measured directly along with the backscatter ratio to a better accuracy of ±1%. Using a large lidar system and assuming 50-km visibility, the proposed technique can be applied to measure backscatter ratio and temperature profiles simultaneously for a 10-km path with 30-m depth resolution in 3 min. With higher SNR the atmospheric pressure profile can also be determined.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 71–151.
    [CrossRef]
  2. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
    [PubMed]
  3. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).
  4. E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution Lidar,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 9–11 1982, (unpublished report, 1982), paper 13.
  5. R. L. Schwiesow, L. Lading, Appl. Opt. 20, 1972 (1981).
    [CrossRef] [PubMed]
  6. J. B. Mason, Appl. Opt. 14, 76 (1975).
    [PubMed]
  7. M. Endemann, R. L. Byer, Appl. Opt. 20, 3211 (1981).
    [CrossRef] [PubMed]
  8. J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1966 (1981).
    [CrossRef]
  9. P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.
  10. H. Shimizu, C. Y. She, “Atomic and Molecular Blocking Filters for High-Resolution Lidar: A Proposed Method for Measuring Atmospheric Visibility Temperature and Pressure,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper D9, pp. 117–119.
  11. A. T. Young, Phys. Today 42 (Jan.1982).
  12. A. Sugawara, S. Yip, Phys. Fluids 10, 1911 (1967).
    [CrossRef]
  13. R. P. Sandoval, R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
    [CrossRef]
  14. S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).
  15. L. A. Johnson, “A Fixed-Delay, Frequency-Shifted Michelson Interferometer for Remote Air Temperature Measurement,” NOAA Report TM ERL WP-89 (Jan.1982).
  16. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, U.P., London, 1971).
  17. R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
    [CrossRef]
  18. H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
    [CrossRef]
  19. G. Fiocco, J. B. Wolf, J. Atmos. Sci. 25, 488 (1968).
    [CrossRef]
  20. J. Lefrere, G. Megie, “Temperature Measurements in the Troposphere and Low Stratosphere using a Dual Wavelength Lidar,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B2, pp. 23–25.
  21. H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

1982

A. T. Young, Phys. Today 42 (Jan.1982).

1981

1979

1977

H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

1976

R. P. Sandoval, R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

1975

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

J. B. Mason, Appl. Opt. 14, 76 (1975).
[PubMed]

1971

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

1968

G. Fiocco, J. B. Wolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

1967

A. Sugawara, S. Yip, Phys. Fluids 10, 1911 (1967).
[CrossRef]

1964

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Armstrong, R. L.

R. P. Sandoval, R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

Beneditti-Michelangeli, G.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

Byer, R. L.

Collis, R. T.

R. T. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 71–151.
[CrossRef]

Cotnoir, L.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

Dombrowski, M.

J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1966 (1981).
[CrossRef]

Eloranta, E. W.

E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution Lidar,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 9–11 1982, (unpublished report, 1982), paper 13.

Endemann, M.

Fiocco, G.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

G. Fiocco, J. B. Wolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Inaba, H.

H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
[CrossRef]

Johnson, L. A.

L. A. Johnson, “A Fixed-Delay, Frequency-Shifted Michelson Interferometer for Remote Air Temperature Measurement,” NOAA Report TM ERL WP-89 (Jan.1982).

Kalshoven, J. E.

J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1966 (1981).
[CrossRef]

Kobayashi, T.

H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

Korb, C. L.

J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1966 (1981).
[CrossRef]

Lading, L.

Lebow, P.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

Lefrere, J.

J. Lefrere, G. Megie, “Temperature Measurements in the Troposphere and Low Stratosphere using a Dual Wavelength Lidar,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B2, pp. 23–25.

Madonna, E.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

Maischberger, K.

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

Mason, J. B.

McCormick, M. P.

Megie, G.

J. Lefrere, G. Megie, “Temperature Measurements in the Troposphere and Low Stratosphere using a Dual Wavelength Lidar,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B2, pp. 23–25.

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, U.P., London, 1971).

Nelkin, M.

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Roesler, F. L.

E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution Lidar,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 9–11 1982, (unpublished report, 1982), paper 13.

Rosenberg, A.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

Russell, P. B.

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

R. T. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 71–151.
[CrossRef]

Sandoval, R. P.

R. P. Sandoval, R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

Schwemmer, G. K.

J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, Appl. Opt. 20, 1966 (1981).
[CrossRef]

Schwiesow, R. L.

She, C. Y.

H. Shimizu, C. Y. She, “Atomic and Molecular Blocking Filters for High-Resolution Lidar: A Proposed Method for Measuring Atmospheric Visibility Temperature and Pressure,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper D9, pp. 117–119.

Shimizu, H.

H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

H. Shimizu, C. Y. She, “Atomic and Molecular Blocking Filters for High-Resolution Lidar: A Proposed Method for Measuring Atmospheric Visibility Temperature and Pressure,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper D9, pp. 117–119.

Sroga, J. T.

E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution Lidar,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 9–11 1982, (unpublished report, 1982), paper 13.

Strobel, S.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

Sugawara, A.

A. Sugawara, S. Yip, Phys. Fluids 10, 1911 (1967).
[CrossRef]

Swissler, T. J.

Wilkerson, T.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

Wolf, J. B.

G. Fiocco, J. B. Wolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Yip, S.

A. Sugawara, S. Yip, Phys. Fluids 10, 1911 (1967).
[CrossRef]

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Young, A. T.

A. T. Young, Phys. Today 42 (Jan.1982).

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, U.P., London, 1971).

Appl. Opt.

J. Atmos. Sci.

G. Fiocco, J. B. Wolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Nature London Phys. Science

G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Science 229, 78 (1971).

Opt. Quantum Electron.

R. L. Byer, Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Phys. Fluids

A. Sugawara, S. Yip, Phys. Fluids 10, 1911 (1967).
[CrossRef]

Phys. Rev. A

R. P. Sandoval, R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Phys. Today

A. T. Young, Phys. Today 42 (Jan.1982).

Trans. IECE

H. Shimizu, T. Kobayashi, H. Inaba, Trans. IECE 60-C, 162 (1977).

Other

R. T. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 71–151.
[CrossRef]

E. W. Eloranta, F. L. Roesler, J. T. Sroga, “The High Spectral Resolution Lidar,” in Technical Digest, Workshop on Optical and Laser Remote Sensing, Monterey, Calif., Feb. 9–11 1982, (unpublished report, 1982), paper 13.

P. Lebow, S. Strobel, T. Wilkerson, L. Cotnoir, A. Rosenberg, “Remote Laser Measurement of Temperature and Humidity using Differential Absorption in Atmospheric Water Vapor,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B4, pp. 30–32.

H. Shimizu, C. Y. She, “Atomic and Molecular Blocking Filters for High-Resolution Lidar: A Proposed Method for Measuring Atmospheric Visibility Temperature and Pressure,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper D9, pp. 117–119.

L. A. Johnson, “A Fixed-Delay, Frequency-Shifted Michelson Interferometer for Remote Air Temperature Measurement,” NOAA Report TM ERL WP-89 (Jan.1982).

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge, U.P., London, 1971).

H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236.
[CrossRef]

J. Lefrere, G. Megie, “Temperature Measurements in the Troposphere and Low Stratosphere using a Dual Wavelength Lidar,” in Eleventh International Laser Radar Conference, NASA Conference Publication 2228 (June1982), paper B2, pp. 23–25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Rayleigh/Mie light scattering spectrum of air molecules consisting of a sharp aerosol peak and a broadened molecular Rayleigh spectrum. In the same figure, the transmission curves of two atomic filters, F′(ν) at lower temperature and F(ν) at higher temperature, are shown. Residual scattering spectra after the transmission through the low temperature filter and high temperature filter are given in (b) and (c), respectively.

Fig. 2
Fig. 2

Solid curve is a Rayleigh-Brillouin spectrum with y = 0.583 for P = 1 atm and T = 300 K. The dashed and light solid lines indicate positive and negative spectral changes corresponding to a +1 K temperature change. The dotted and dash–dot lines indicate positive and negative spectral changes corresponding to 1-mbar pressure change.

Fig. 3
Fig. 3

Schematic of a HSRL system using atomic filters. The laser is tuned to the peak absorption, and lidar return is divided into three channels, with 50% in channel 2 (b2 = 0.5) and 25% in channels 1 and 3 (b1 = b3 = 0.25).

Fig. 4
Fig. 4

Calculated f m / f m as a function of temperature. Two curves are shown with pressures being 1 and 0.5 atm. The error bars on the calibration curves correspond to a 10-mbar pressure change at the same temperature. Clearly f m / f m is not sensitive to a pressure change of a few millibars.

Fig. 5
Fig. 5

Range-dependent measurement time for large (solid curves) and small (dashed curves) HSRL systems. Each set consists of three curves corresponding to atmospheres with zero extinction and 50- and 10-km visibility.

Fig. 6
Fig. 6

Measured transmission curves for I2 cells at different temperatures are shown as a function of frequency. These curves were used in the data analysis of the preliminary experiments.

Tables (4)

Tables Icon

Table I Atoms Suitable for Blocking Filters and Their Properties

Tables Icon

Table II Calculated Molecular Attenuation Factors of Filters (fm for the High Temperature and f m for the Low Temperature Filter) and Fractional Changes of ( f m / f m ), (nfm), and ( n f m ); the Mean Air Temperature and Pressure Used are 300 K and 1 atm, Respectively

Tables Icon

Table III Parameters for HSRL Systems

Tables Icon

Table IV Measured Attenuation Factors and Scatter Ratio (at θ = 90°) Using I2 Filters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

x = ω K υ 0 , υ 0 2 = 2 k T M ,
y = 0.2308 T ( K ) + 110.4 T ( K ) 2 P ( atm ) λ ( nm ) sin ( θ / 2 ) ,
R ( x , y ) d x = 1 ,
F ( ν ) = exp { k 0 l exp [ 4 ln 2 ( ν ν 0 ) 2 / ( Δ ν D ) 2 ] }
F ( x ) = exp { k 0 l exp [ ln 2 ( K υ 0 x ) 2 / ( π Δ ν D ) 2 ] } ,
Δ ν D = 2.1472 × 10 5 λ 0 ( cm ) T 0 M ( amu ) GHz ,
k 0 = 2.4928 × 10 11 Δ ν D ( GHz ) N a ( cm 3 ) f cm 1 ,
f a = F ( ν ) δ ( ν ν 0 ) d ν = F ( ν 0 ) .
f m ( P , T ) = R ( ν , T , P ) F ( ν ) d ν .
N s ( R ) = [ E ( ν ) / h ν ] η ( ν ) ( A L / R 2 ) β s ( ν , R ) Q 2 ( ν , R )
Q ( ν , R ) = exp [ 0 R α e ( ν , R ) d R ] ,
r ( ν , R ) = β s ( ν , R ) β m ( ν , R ) = N s ( R ) B ( ν , R ) Q 2 ( ν , R ) β m ( ν , R ) ,
B ( ν , R ) = [ E ( ν ) / h ν ] η ( ν ) ( A L / R 2 ) .
N 1 ( R ) = b 1 B ( ν , R ) ( β m + β a ) Q 2 ( ν , R ) ,
N 2 ( R ) = b 2 B ( ν , R ) ( f m β m + f a β a ) Q 2 ( ν , R ) ,
r ( ν , R ) = [ N 1 b 2 ( f m f a ) / N 2 b 1 ] / ( 1 f a N 1 b 2 / N 2 b 1 ) ,
Q ( ν , R ) = [ N 2 ( 1 f a N 1 b 2 / N 2 b 1 ) β m / b 2 B ( ν ) ( f m f a ) ] 1 / 2 .
β m = 3 8 π n ( P , T ) σ ( ν ) ,
N 2 ( R ) = b 2 B ( ν ) ( f m β m + f a β a ) Q 2 ( ν , R ) b 2 B ( ν ) f m β m Q 2 ( ν , R ) ,
N 3 ( R ) = b 3 B ( ν ) ( f m β m + f a β a ) Q 2 ( ν , R ) b 3 B ( ν ) f m β m Q 2 ( ν , R ) ,
f m f m N 2 b 3 N 3 b 2 .
F ( x ) = exp { 4.0 × 10 4 exp [ 4 ln 2 ( 1.503 x / 1.02 ) 2 ] } ,
F ( x ) = exp { 1.65 × 10 2 exp [ 4 ln 2 ( 1.503 x / 0.93 ) 2 ] } .
2 S = p N 2 ( R ) / μ
τ meas = p m = 16 π μ 3 m b 2 B ( ν ) f m n ( P , T ) σ ( ν ) Q 2 ( ν , R ) S 2 ,

Metrics