Abstract

A technique for operating krypton-filled flashlamps at high repetition rates and with high efficiency in Q-switched lasers is described. The technique uses high simmer currents to remove the timing and amplitude jitter that occurs at high repetition rates when krypton-filled lamps are run with conventional, low simmer currents. Besides giving excellent pulse-to-pulse reproducibility in the laser output, the method also removes any tendency for the lamp to misfire or extinguish.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Richards, D. Rees, “The Choice of a Laser for Airborne Depth Sounding,” ERL-0213-TR, 1982.
  2. W. Koechner, Solid State Laser Engineering (Springer, New York, 1976), p. 299.
  3. M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
    [CrossRef]
  4. D. B. Northam, M. A. Guerra, M. E. Mack, I. Itzkan, C. Deradourian, Appl. Opt. 20, 968 (1981).
    [CrossRef] [PubMed]
  5. R. H. Dishington, W. R. Hook, R. P. Hilberg, Appl. Opt. 13, 2300 (1974).
    [CrossRef] [PubMed]
  6. Ref. 2, Chap. 7.
  7. J. Richards, M. M. Wolf, B. A. See, “Thermal Lensing in Nd:YAG,” ERL-01710-TM, 1980.

1981 (1)

1974 (1)

1968 (1)

M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
[CrossRef]

Davies, M. B.

M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
[CrossRef]

Deradourian, C.

Dishington, R. H.

Guerra, M. A.

Hilberg, R. P.

Hook, W. R.

Itzkan, I.

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976), p. 299.

Mack, M. E.

Northam, D. B.

Rees, D.

J. Richards, D. Rees, “The Choice of a Laser for Airborne Depth Sounding,” ERL-0213-TR, 1982.

Richards, J.

J. Richards, D. Rees, “The Choice of a Laser for Airborne Depth Sounding,” ERL-0213-TR, 1982.

J. Richards, M. M. Wolf, B. A. See, “Thermal Lensing in Nd:YAG,” ERL-01710-TM, 1980.

See, B. A.

J. Richards, M. M. Wolf, B. A. See, “Thermal Lensing in Nd:YAG,” ERL-01710-TM, 1980.

Sharman, P.

M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
[CrossRef]

Wolf, M. M.

J. Richards, M. M. Wolf, B. A. See, “Thermal Lensing in Nd:YAG,” ERL-01710-TM, 1980.

Wright, J. K.

M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

M. B. Davies, P. Sharman, J. K. Wright, IEEE J. Quantum Electron. QE-4, 424 (1968).
[CrossRef]

Other (4)

Ref. 2, Chap. 7.

J. Richards, M. M. Wolf, B. A. See, “Thermal Lensing in Nd:YAG,” ERL-01710-TM, 1980.

J. Richards, D. Rees, “The Choice of a Laser for Airborne Depth Sounding,” ERL-0213-TR, 1982.

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976), p. 299.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pulse-forming network for operating flashlamp.

Fig. 2
Fig. 2

Typical jitter in the light output from a 4-mm bore 75-mm arc length krypton-filled flashlamp running at 150 Hz and using 100-mA simmer.

Fig. 3
Fig. 3

Typical voltage recovery across a 5- × 75-mm flashlamp running at 160 Hz for simmer currents of (A) 100 mA and (5) 4 A.

Fig. 4
Fig. 4

Effect of low (100-mA, case A) and high (4-A, case B) simmer on the shape of the current pulse at 160 Hz and at an input energy of 5.5 J.

Fig. 5
Fig. 5

Ratio of efficiencies in producing Q-switched energy at low and high simmer as a function of repetition rate.

Fig. 6
Fig. 6

Ratio of un-Q-switched laser output at high (3-A) and low (100-mA) simmer as a function of repetition rate.

Fig. 7
Fig. 7

Dependence of input energy required to maintain constant laser output (20 mJ in cases A and C, 25 mJ in case B) on number of flashes at 168 Hz.

Fig. 8
Fig. 8

Dependence of rod optical power on total input electrical power.

Metrics