Abstract

A new type of waveguide laser is described in which a single-surface concave metal waveguide also doubles as the grounded electrode in a radio-frequency-excited gaseous discharge. The laser’s output modes and spectrum have been studied theoretically and experimentally for cw CO2 operation of the laser. Overall operating efficiency and mode stability are comparable with those of conventional dielectric waveguide CO2 lasers, and advantages of the metal waveguide laser include convection cooling, intracavity mode control, and partial self-alignment.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, Nature (London) 187, 493 (1960).
    [CrossRef]
  2. C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
    [CrossRef]
  3. K. M. Arnold, S. Mayburg, J. Appl. Phys. 34, 3136 (1963).
    [CrossRef]
  4. F. H. Nicoll, IEEE J. Quantum Electron. QE-4, 198 (1968).
    [CrossRef]
  5. Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
    [CrossRef]
  6. D. Roess, Proc. IEEE 51, 468 (1963).
    [CrossRef]
  7. D. Walsh, G. Kemeny, J. Appl. Phys. 34, 956 (1963).
    [CrossRef]
  8. D. Roess, G. Gehrer, Proc. IEEE 52, 1359 (1964).
    [CrossRef]
  9. N. Matsumoto, K. Kumabe, Jpn. J. Appl. Phys. 16, 1395 (1977).
    [CrossRef]
  10. I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
    [CrossRef]
  11. S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
    [CrossRef]
  12. L. A. Wainstein, High-Power Electron. 3, 176 (1964).
  13. G. Goubau, F. Schwering, IEEE Trans. Microwave Theory Tech. MTT-13, 749 (1965).
    [CrossRef]
  14. E. A. J. Marcatili, U.S. Patent3,241,085 (1966).
  15. L. W. Casperson, J. Opt. Soc. Am. 63, 25 (1973).
    [CrossRef]
  16. L. W. Casperson, C. Romero, IEEE J. Quantum Electron. QE-9, 484 (1973).
    [CrossRef]
  17. See, for example, L. Lewin, Proc. Inst. Electr. Eng. 102B, 75 (1955).
  18. E. Garmire, T. McMahon, M. Bass, Appl. Opt. 15, 145 (1976).
    [CrossRef] [PubMed]
  19. E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
    [CrossRef]
  20. E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
    [CrossRef]
  21. H. Krammer, Appl. Opt. 16, 2163 (1977).
    [CrossRef] [PubMed]
  22. H. Krammer, Appl. Opt. 17, 316 (1978).
    [CrossRef] [PubMed]
  23. M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
    [CrossRef]
  24. M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
    [CrossRef]
  25. L. W. Casperson, T. S. Garfield, IEEE J. Quantum Electron. QE-15, 491 (1979).
    [CrossRef]
  26. M. E. Marhic, J. Opt. Soc. Am. 69, 1218 (1979).
    [CrossRef]
  27. M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
    [CrossRef]
  28. K. D. Laakman, U.S. Patent4,169,251 (1979).
  29. G. A. Griffith, Hughes Aircraft Co.; unpublished correspondence (1979).
  30. L. V. Sutter, Hughes Aircraft Co.; unpublished correspondence (1980).
  31. J. H. Wang, J. N. Parento, Hughes Aircraft Co.; unpublished correspondence (1981).
  32. A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 217.

1980 (2)

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

1979 (3)

L. W. Casperson, T. S. Garfield, IEEE J. Quantum Electron. QE-15, 491 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
[CrossRef]

M. E. Marhic, J. Opt. Soc. Am. 69, 1218 (1979).
[CrossRef]

1978 (3)

H. Krammer, Appl. Opt. 17, 316 (1978).
[CrossRef] [PubMed]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
[CrossRef]

1977 (3)

N. Matsumoto, K. Kumabe, Jpn. J. Appl. Phys. 16, 1395 (1977).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
[CrossRef]

H. Krammer, Appl. Opt. 16, 2163 (1977).
[CrossRef] [PubMed]

1976 (2)

E. Garmire, T. McMahon, M. Bass, Appl. Opt. 15, 145 (1976).
[CrossRef] [PubMed]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
[CrossRef]

1973 (2)

L. W. Casperson, C. Romero, IEEE J. Quantum Electron. QE-9, 484 (1973).
[CrossRef]

L. W. Casperson, J. Opt. Soc. Am. 63, 25 (1973).
[CrossRef]

1972 (1)

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

1968 (1)

F. H. Nicoll, IEEE J. Quantum Electron. QE-4, 198 (1968).
[CrossRef]

1965 (1)

G. Goubau, F. Schwering, IEEE Trans. Microwave Theory Tech. MTT-13, 749 (1965).
[CrossRef]

1964 (2)

L. A. Wainstein, High-Power Electron. 3, 176 (1964).

D. Roess, G. Gehrer, Proc. IEEE 52, 1359 (1964).
[CrossRef]

1963 (3)

D. Roess, Proc. IEEE 51, 468 (1963).
[CrossRef]

D. Walsh, G. Kemeny, J. Appl. Phys. 34, 956 (1963).
[CrossRef]

K. M. Arnold, S. Mayburg, J. Appl. Phys. 34, 3136 (1963).
[CrossRef]

1961 (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

1960 (1)

T. H. Maiman, Nature (London) 187, 493 (1960).
[CrossRef]

1955 (1)

See, for example, L. Lewin, Proc. Inst. Electr. Eng. 102B, 75 (1955).

Arnold, K. M.

K. M. Arnold, S. Mayburg, J. Appl. Phys. 34, 3136 (1963).
[CrossRef]

Bar-Chaim, N.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

Bass, M.

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Opt. 15, 145 (1976).
[CrossRef] [PubMed]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
[CrossRef]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Casperson, L. W.

L. W. Casperson, T. S. Garfield, IEEE J. Quantum Electron. QE-15, 491 (1979).
[CrossRef]

L. W. Casperson, C. Romero, IEEE J. Quantum Electron. QE-9, 484 (1973).
[CrossRef]

L. W. Casperson, J. Opt. Soc. Am. 63, 25 (1973).
[CrossRef]

Emanuel, G.

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

Epstein, M.

M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
[CrossRef]

Garfield, T. S.

L. W. Casperson, T. S. Garfield, IEEE J. Quantum Electron. QE-15, 491 (1979).
[CrossRef]

Garmire, E.

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Opt. 15, 145 (1976).
[CrossRef] [PubMed]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Gehrer, G.

D. Roess, G. Gehrer, Proc. IEEE 52, 1359 (1964).
[CrossRef]

Goubau, G.

G. Goubau, F. Schwering, IEEE Trans. Microwave Theory Tech. MTT-13, 749 (1965).
[CrossRef]

Griffith, G. A.

G. A. Griffith, Hughes Aircraft Co.; unpublished correspondence (1979).

Horvath, Z. G.

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Kemeny, G.

D. Walsh, G. Kemeny, J. Appl. Phys. 34, 956 (1963).
[CrossRef]

Kerber, R. L.

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

Kilpio, A. V.

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

Krammer, H.

Kumabe, K.

N. Matsumoto, K. Kumabe, Jpn. J. Appl. Phys. 16, 1395 (1977).
[CrossRef]

Kwan, L. I.

M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
[CrossRef]

Laakman, K. D.

K. D. Laakman, U.S. Patent4,169,251 (1979).

Lewin, L.

See, for example, L. Lewin, Proc. Inst. Electr. Eng. 102B, 75 (1955).

Maiman, T. H.

T. H. Maiman, Nature (London) 187, 493 (1960).
[CrossRef]

Malyutin, A. A.

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, U.S. Patent3,241,085 (1966).

Margalit, S.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

Marhic, M. E.

M. E. Marhic, J. Opt. Soc. Am. 69, 1218 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
[CrossRef]

Matsumoto, N.

N. Matsumoto, K. Kumabe, Jpn. J. Appl. Phys. 16, 1395 (1977).
[CrossRef]

Mayburg, S.

K. M. Arnold, S. Mayburg, J. Appl. Phys. 34, 3136 (1963).
[CrossRef]

McMahon, T.

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Opt. 15, 145 (1976).
[CrossRef] [PubMed]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
[CrossRef]

Nicoll, F. H.

F. H. Nicoll, IEEE J. Quantum Electron. QE-4, 198 (1968).
[CrossRef]

Parento, J. N.

J. H. Wang, J. N. Parento, Hughes Aircraft Co.; unpublished correspondence (1981).

Roess, D.

D. Roess, G. Gehrer, Proc. IEEE 52, 1359 (1964).
[CrossRef]

D. Roess, Proc. IEEE 51, 468 (1963).
[CrossRef]

Romero, C.

L. W. Casperson, C. Romero, IEEE J. Quantum Electron. QE-9, 484 (1973).
[CrossRef]

Schwering, F.

G. Goubau, F. Schwering, IEEE Trans. Microwave Theory Tech. MTT-13, 749 (1965).
[CrossRef]

Serkyu-chenko, Y. N.

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

Suchard, S. N.

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

Sutter, L. V.

L. V. Sutter, Hughes Aircraft Co.; unpublished correspondence (1980).

Ury, I.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

Wainstein, L. A.

L. A. Wainstein, High-Power Electron. 3, 176 (1964).

Walsh, D.

D. Walsh, G. Kemeny, J. Appl. Phys. 34, 956 (1963).
[CrossRef]

Wang, J. H.

J. H. Wang, J. N. Parento, Hughes Aircraft Co.; unpublished correspondence (1981).

Whittier, J. S.

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

Wilt, D.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

Yariv, A.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 217.

Yust, M.

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 609 (1978).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, Appl. Phys. Lett. 33, 874 (1978).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 29, 254 (1976).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, Appl. Phys. Lett. 31, 92 (1977).
[CrossRef]

I. Ury, S. Margalit, N. Bar-Chaim, M. Yust, D. Wilt, A. Yariv, Appl. Phys. Lett. 36, 629 (1980).
[CrossRef]

High-Power Electron. (1)

L. A. Wainstein, High-Power Electron. 3, 176 (1964).

IEEE J. Quantum Electron. (4)

L. W. Casperson, C. Romero, IEEE J. Quantum Electron. QE-9, 484 (1973).
[CrossRef]

F. H. Nicoll, IEEE J. Quantum Electron. QE-4, 198 (1968).
[CrossRef]

L. W. Casperson, T. S. Garfield, IEEE J. Quantum Electron. QE-15, 491 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, IEEE J. Quantum Electron. QE-15, 487 (1979).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. Goubau, F. Schwering, IEEE Trans. Microwave Theory Tech. MTT-13, 749 (1965).
[CrossRef]

J. Appl. Phys. (2)

D. Walsh, G. Kemeny, J. Appl. Phys. 34, 956 (1963).
[CrossRef]

K. M. Arnold, S. Mayburg, J. Appl. Phys. 34, 3136 (1963).
[CrossRef]

J. Chem. Phys. (1)

S. N. Suchard, R. L. Kerber, G. Emanuel, J. S. Whittier, J. Chem. Phys. 57, 5065 (1972), and references therein.
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

N. Matsumoto, K. Kumabe, Jpn. J. Appl. Phys. 16, 1395 (1977).
[CrossRef]

Nature (London) (1)

T. H. Maiman, Nature (London) 187, 493 (1960).
[CrossRef]

Opt. Commun. (1)

Z. G. Horvath, A. V. Kilpio, A. A. Malyutin, Y. N. Serkyu-chenko, Opt. Commun. 35, 142 (1980).
[CrossRef]

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Proc. IEEE (2)

D. Roess, Proc. IEEE 51, 468 (1963).
[CrossRef]

D. Roess, G. Gehrer, Proc. IEEE 52, 1359 (1964).
[CrossRef]

Proc. Inst. Electr. Eng. (1)

See, for example, L. Lewin, Proc. Inst. Electr. Eng. 102B, 75 (1955).

Other (6)

E. A. J. Marcatili, U.S. Patent3,241,085 (1966).

K. D. Laakman, U.S. Patent4,169,251 (1979).

G. A. Griffith, Hughes Aircraft Co.; unpublished correspondence (1979).

L. V. Sutter, Hughes Aircraft Co.; unpublished correspondence (1980).

J. H. Wang, J. N. Parento, Hughes Aircraft Co.; unpublished correspondence (1981).

A. Yariv, Quantum Electronics (Wiley, New York, 1975), p. 217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Low-loss cylindrical laser resonator.

Fig. 2
Fig. 2

Coordinate system used in the analysis of a metal waveguide laser.

Fig. 3
Fig. 3

Low-order Airy function radial modes of a metal strip waveguide.

Fig. 4
Fig. 4

Laser-head lumped circuit model.

Fig. 5
Fig. 5

Photograph of rf-excited CO2 metal waveguide laser.

Fig. 6
Fig. 6

Laser output power vs gas pressure.

Fig. 7
Fig. 7

Rf power electronics arrangement.

Fig. 8
Fig. 8

Laser output power vs rf drive frequency at 50-W rf power, 50-torr pressure, and a gas mixture of 3:1:1, He:CO2N2.

Fig. 9
Fig. 9

Relative mode spacings for the multimode laser. The numbers in parentheses correspond to longitudinal mode number, transverse Hermite-Gaussian mode number, and transverse Airy-mode number, respectively.

Fig. 10
Fig. 10

Experimental arrangement for measuring the laser output spectrum.

Fig. 11
Fig. 11

Laser output spectrum for (a) no intracavity aperture, 2-MHz/div horizontal, arbitrary units vertical, and (b) intracavity aperture, 10-MHz/div horizontal, arbitrary units vertical.

Tables (1)

Tables Icon

Table I Multimode Laser’s Calculated Mode Spacings

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

G ( ϕ , z ) = G 0 exp { i [ Q ( ϕ ) z 2 / 2 + S ( ϕ ) z ] } ,
Q 2 + k 0 r 0 d Q d ϕ + k 0 2 r 0 R 0 = 0 ,
Q S + k 0 r 0 d S d ϕ = 0.
Q ( ϕ ) = k 0 R ( ϕ ) i 2 w 2 ( ϕ ) ,
w = [ 2 ( r 0 R 0 ) 1 / 2 / k 0 ] 1 / 2 .
d a ( r 0 ϕ ) = d a ( 0 ) cos [ ( r 0 / R 0 ) 1 / 2 ϕ ] + d a ( 0 ) ( r 0 R 0 ) 1 / 2 × sin [ ( r 0 / R 0 ) 1 / 2 ϕ ] ,
d 2 H d ζ 2 2 ζ d H d ζ + 2 m H = 0 ,
ζ = ( Q i ) 1 / 2 ( z d a ) ,
d 2 A d ρ 2 ρ A = 0 ,
ρ = ( 2 k 0 2 / r 0 ) 2 / 3 [ ( 2 k 0 2 / r 0 ) r α ] ,
F ( ϕ ) = F 0 exp [ i P ( ϕ ) ] ,
1 r 0 d P d ϕ = i Q r 2 k 0 + ( m + 1 / 2 ) Q i k 0 S 2 + α 2 k 0 .
1 r d P d ϕ = m + 1 / 2 ( r 0 R 0 ) 1 / 2 α 2 k 0 ,
2 π q = 2 r 0 ϕ 0 m + 1 / 2 ( r 0 R 0 ) 1 / 2 + 2 r 0 ϕ 0 α n 2 k 0 + 2 k 0 r 0 ϕ 0 ,
Δ ν longitudinal = c 2 r 0 ϕ 0 ,
Δ ν transverse-Hermite = c 2 π ( r 0 R 0 ) 1 / 2 ,
Δ ν transverse-Airy = c ( α n α n 1 ) 4 π k 0 .
J ( t ) = N e e 2 E cos ( ω t ϕ ) m e ( ν 2 + ω 2 ) 1 / 2 ,
x ( t ) = e E sin ( ω t ϕ ) m e ω ( ν 2 + ω 2 ) 1 / 2 .
f e V π m e d 2 ν = 11 MHz ,
f < c 4 l = 375 MHz ,
x 0 = 7 × 10 6 2 f = 0.23 mm at f = 150 MHz .
Δ r = 3 ( r 0 / 2 k 0 2 ) 1 / 3 .

Metrics