Abstract

The gain coefficient in a low-pressure chemical laser during lasing differs when viewed along the optical resonator axis and when viewed normal to the axis. Expressions for axial and normal gain coefficients are deduced. The ratio of normal-to-axial gain coefficient is evaluated for a saturated multimode chemical laser employing a Fabry-Perot resonator. The results are useful for correlating numerical code calculations with experimental power on gain measurements made normal to the optical axis.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), pp. 144–155.
  2. D. L. Bullock, M. M. Valley, R. S. Lipkis, “Advanced Chemical Laser Optics Study,” TRW Final Report, contract F29601-79-C-0022, CDRL Item A005, 15July1982.
  3. H. Mirels, AIAA J. 17, 478 (1979).
    [CrossRef]
  4. H. Mirels, Appl. Opt. 20, 362 (1981).
    [CrossRef] [PubMed]
  5. H. Mirels, Appl. Opt. 20, 835 (1981).
    [CrossRef] [PubMed]

1981 (2)

1979 (1)

H. Mirels, AIAA J. 17, 478 (1979).
[CrossRef]

Bullock, D. L.

D. L. Bullock, M. M. Valley, R. S. Lipkis, “Advanced Chemical Laser Optics Study,” TRW Final Report, contract F29601-79-C-0022, CDRL Item A005, 15July1982.

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), pp. 144–155.

Lipkis, R. S.

D. L. Bullock, M. M. Valley, R. S. Lipkis, “Advanced Chemical Laser Optics Study,” TRW Final Report, contract F29601-79-C-0022, CDRL Item A005, 15July1982.

Mirels, H.

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), pp. 144–155.

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), pp. 144–155.

Valley, M. M.

D. L. Bullock, M. M. Valley, R. S. Lipkis, “Advanced Chemical Laser Optics Study,” TRW Final Report, contract F29601-79-C-0022, CDRL Item A005, 15July1982.

AIAA J. (1)

H. Mirels, AIAA J. 17, 478 (1979).
[CrossRef]

Appl. Opt. (2)

Other (2)

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974), pp. 144–155.

D. L. Bullock, M. M. Valley, R. S. Lipkis, “Advanced Chemical Laser Optics Study,” TRW Final Report, contract F29601-79-C-0022, CDRL Item A005, 15July1982.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Coordinate system.

Fig. 2
Fig. 2

Low-pressure cw chemical laser with F. P. resonator.

Fig. 3
Fig. 3

Line shape in multimode low-pressure cw chemical laser.

Fig. 4
Fig. 4

Effect of frequency range parameter Xf on gain ratio.

Fig. 5
Fig. 5

Variation of gain ratio with streamwise distance in saturated multimode low-pressure cw chemical laser.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( ν ν 0 1 ) y = υ y c ,
( ν ν 0 1 ) z = υ z c ,
Δ n n 2 n 1 ,
[ Δ n ( ν ) ] y [ n 2 ( ν ) n 1 ( ν ) ] y ,
[ Δ n ( ν ) ] z [ n 2 ( ν ) n 1 ( n 1 ( ν ) ] z ,
g y ( ν ) = σ 0 L ( ν ν ) [ Δ n ( ν ) ] y d ν ,
g z ( ν ) = σ 0 L ( ν ν ) [ Δ n ( ν ) ] z d ν ,
L ( ν ν ) = σ ( ν , ν ) σ 0 = [ 1 + 4 ( ν ν Δ ν h ) 2 ] 1 .
[ Δ n ( ν ) ] z Δ n = p ¯ 0 exp ( X 2 ) ,
p ¯ 0 [ ( 4 ln 2 ) / π ] 1 / 2 / Δ ν d ,
X ( 4 ln 2 ) 1 / 2 ( ν ν 0 ) / Δ ν d ,
g y ( ν ) = ( π / 2 ) σ 0 Δ ν h [ Δ n ( ν ) ] y ,
g z ( ν ) = ( π / 2 ) σ 0 Δ ν h p ¯ 0 Δ n exp ( X 2 ) .
g y ( ν ) g z ( ν ) = [ Δ n ( ν ) ] y P ¯ 0 Δ n exp ( X 2 ) .
X f = ( 4 ln 2 ) 1 / 2 ( ν f ν 0 ) / Δ ν d ,
[ Δ n ( ν ) ] z p ¯ 0 Δ n = exp ( X 2 ) ,
[ Δ n ( ν ) ] y p ¯ 0 Δ n = [ 2 X f π 1 / 2 + exp ( X f 2 ) erfc X f ] 1 | X | X f
= [ ] 1 exp ( X f 2 X 2 ) | X | > X f
g z ( ν 0 ) g y ( ν 0 ) = 2 X f π 1 / 2 + exp ( X f 2 ) erfc X f ,
R k c r k c d 1 ; g c g m z p 1 ; R g c g m z p = 0 ( 1 ) .
ζ = [ ( 2 + β 2 ) 1 / 2 β ] 2 / 4 ,
β = 2 π ( R 1.804 g c g m z p ) [ exp ( X f 2 ) erf X f 2 X f π 1 / 2 ] .

Metrics