Abstract

A simple method of measuring refractive indices of bulk materials using a prism coupling procedure is described. Refractive indices are determined from the measurement of the angle incident to the prism at which total reflection on the prism base breaks. This method is shown to possess the advantages of its simple procedure and sample preparation. The accuracy is comparable with that of minimum deviation method if the prism is well calibrated. Experimental results for several materials are given with an evaluation of possible errors.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 177–180.
  2. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
    [CrossRef]
  3. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  4. R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (1973).
    [CrossRef] [PubMed]

1973 (1)

1969 (1)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

1965 (1)

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Bond, W. L.

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 177–180.

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Tien, P. K.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Torge, R.

Ulrich, R.

R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (1973).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 177–180.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

J. Appl. Phys. (1)

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959), pp. 177–180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental arrangement. The coordinate system used in this paper is also illustrated.

Fig. 2
Fig. 2

Variation of power reflection coefficient Rp for TE polarization vs the angle of incidence θ (reflection) at the prism base or the propagation constant β/ko. The parameter at the curves is the gap thickness.

Fig. 3
Fig. 3

Variation of power reflection coefficient Rp for TM polarization.

Fig. 4
Fig. 4

Variation of power reflection coefficient Rp for TM polarization. The gap is assumed filled with CH2I2 (n = 1.74).

Fig. 5
Fig. 5

Variation of power reflection coefficient Rp for TE polarization for Gaussian beam incidence. The gap thickness is taken to be 0.02 μm. The parameter at the curves is the halfwidth of the incident Gaussian beam.

Fig. 6
Fig. 6

Measured output light intensity vs incident angle: TiO2 prism; c-cut LiTaO3 sample; TE polarization.

Tables (1)

Tables Icon

Table I Measured Refractive Indices for Several Materials at 0.6328 μm by the Prism Coupling Method; These Values are Believed Accurate to ±0.0003

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n y β / k o , R p = 1 ,
n g β / k o n y , R p = g e 2 ( p e s e ) 2 + ( g e 2 + p e s e ) 2 tanh 2 g e d g e 2 ( p e + s e ) 2 + ( g e 2 + p e s e ) 2 tanh 2 g e d ,
β = n p k 0 sin θ ,
p e = ( n p 2 k o 2 β 2 ) 1 / 2 ,
g e = ( β 2 n g 2 k o 2 ) 1 / 2 ,
s e = ( n y 2 k o 2 β 2 ) 1 / 2 ,
R p 1 4 s e p e ( 1 tanh 2 g e d 1 + g e 2 p e 2 tanh 2 g e d ) .
n y = sin α cos + ( n p 2 sin 2 α ) 1 / 2 sin .
n x β / k o , R p = 1 ,
n g β / k o n x , R p = n g 4 g m 2 ( n z 2 p m n p 2 s m ) 2 + ( n p 2 n z 2 g m 2 + n g 4 p m s m ) 2 tanh 2 g m d n g 4 g m 2 ( n z 2 p m + n p 2 s m ) 2 + ( n p 2 n z 2 g m 2 n g 4 p m s m ) 2 tanh 2 g m d ,
p m = ( n p 2 k o 2 β 2 ) 1 / 2 ,
g m = ( β 2 n g 2 k o 2 ) 1 / 2 ,
s m = n z n x ( n x 2 k o 2 β 2 ) 1 / 2 .
R p 1 4 n p 2 s m n z 2 p m ( 1 tanh 2 g m d 1 + n p 4 n g 4 g m 2 p m 2 tanh 2 g m d ) .

Metrics