Abstract

The intrinsic cutoff wavelength of the LP11 mode is investigated using three different types of measurement for an ITT single-mode fiber. Characterization of the far-field pattern of the LP01 mode gives a cutoff value ~660 nm, a near-field transmission experiment gives ~690 nm, and a refracted power measurement gives ~830 nm. We conclude that the refracted power technique is the best experimental method for the determination of the intrinsic cutoff wavelength of a fiber sample. The effect of the loss of coupling efficiency into the LP11 mode as cutoff is approached on the transmission and refracted power experiments is noted.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Heckman, Electron. Lett. 17, 499 (1981).
    [CrossRef]
  2. W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
    [CrossRef]
  3. W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
    [CrossRef]
  4. Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
    [CrossRef]
  5. Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
    [CrossRef]
  6. Y. Murakami, A. Kawana, H. Isuchiya, Appl. Opt. 18, 1101 (1979).
    [CrossRef] [PubMed]
  7. V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
    [CrossRef]
  8. A. W. Snyder, R. A. Sammut, J. Opt. Soc. Am. 69, 1663 (1979).
    [CrossRef]
  9. C. Pask, R. A. Sammut, Electron. Lett. 16, 310 (1980).
    [CrossRef]
  10. E. Snitzer, H. Osterberg, J. Opt. Soc. Am. 51, 499 (1961).
    [CrossRef]
  11. M. Imai, E. Hara, Appl. Opt. 14, 169 (1975).
    [PubMed]
  12. F. Akers, ITT Electro-Optical Products Division, Roanoke, Va.; private communication.
  13. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  14. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]

1981 (1)

S. Heckman, Electron. Lett. 17, 499 (1981).
[CrossRef]

1980 (2)

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

C. Pask, R. A. Sammut, Electron. Lett. 16, 310 (1980).
[CrossRef]

1979 (3)

1977 (1)

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

1976 (2)

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

1975 (1)

1971 (1)

1961 (1)

Akers, F.

F. Akers, ITT Electro-Optical Products Division, Roanoke, Va.; private communication.

Bhagavatula, V. A.

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

Dyott, R. B.

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

Gloge, D.

Hara, E.

Heckman, S.

S. Heckman, Electron. Lett. 17, 499 (1981).
[CrossRef]

Imai, M.

Isuchiya, H.

Kato, Y.

Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Kawana, A.

Keck, D. B.

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

Kitayama, K.

Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
[CrossRef]

Love, W. F.

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

Murakami, Y.

Nakahara, M.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Norman, S. R.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Osterberg, H.

Pask, C.

C. Pask, R. A. Sammut, Electron. Lett. 16, 310 (1980).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

Sammut, R. A.

C. Pask, R. A. Sammut, Electron. Lett. 16, 310 (1980).
[CrossRef]

A. W. Snyder, R. A. Sammut, J. Opt. Soc. Am. 69, 1663 (1979).
[CrossRef]

Seikai, S.

Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
[CrossRef]

Snitzer, E.

Snyder, A. W.

Tokuda, M.

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Uchida, N.

Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

Westwig, R. A.

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

Appl. Opt. (3)

Electron Lett. (1)

Y. Kato, K. Kitayama, S. Seikai, N. Uchida, Electron Lett. 15, 410 (1979).
[CrossRef]

Electron. Lett. (5)

V. A. Bhagavatula, W. F. Love, D. B. Keck, R. A. Westwig, Electron. Lett. 16, 695 (1980).
[CrossRef]

C. Pask, R. A. Sammut, Electron. Lett. 16, 310 (1980).
[CrossRef]

S. Heckman, Electron. Lett. 17, 499 (1981).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, 133 (1977).
[CrossRef]

Y. Katsuyama, M. Tokuda, N. Uchida, M. Nakahara, Electron. Lett. 12, 669 (1976).
[CrossRef]

IEE J. Microwaves Opt. Acoust. (1)

W. A. Gambling, D. N. Payne, H. Matsumura, R. B. Dyott, IEE J. Microwaves Opt. Acoust. 1, 13 (1976).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (2)

F. Akers, ITT Electro-Optical Products Division, Roanoke, Va.; private communication.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical microscope photograph of the etched ITT single-mode fiber. The subdivision shown is 2.8 μm.

Fig. 2
Fig. 2

Experimental setup for the refracted power method.

Fig. 3
Fig. 3

Dependence of observed cutoff wavelength on fiber length and condition of curvature in the near-field transmission experiment.

Fig. 4
Fig. 4

Dependence of normalized refracted power on the wavelength in the refracted power experiment: (a) data and fitted transition curve for 0.25-mm radiation length, (b) transition curves for radiation lengths 5.0, 3.0, 2.3, and 0.25 mm.

Fig. 5
Fig. 5

Model for interpreting the experimental results from refracted power measurements.

Fig. 6
Fig. 6

Normalized mode radius of LP11 mode vs wavelength assuming the cutoff wavelength is 830 nm. Dashed curve is defined as R/a = 1 + (1/w) by Marcuse.12 Solid curves are calculated from the Appendix for constant mode power. The percentage shown on each curve is the portion of the mode power guided outside of the mode radius R.

Tables (1)

Tables Icon

Table I Transition Region and the Observed Cutoff Wavelength in the Refracted Power Technique

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L P 01 : L P 11 : radiation modes : I 01 , I 11 ( x , λ ) = I 11 ( 0 , λ ) exp [ α 11 ( λ ) x ] , I r ( 0 , λ ) ,
I rad ( L R , λ ) = I r ( 0 , λ ) + I 11 ( 0 , λ ) { 1 exp [ α 11 ( λ ) L R ] } ,
I g ( L R ) = I 01 + I 11 ( 0 , λ ) exp [ α 11 ( λ ) L R ] ,
P l ( r R ) = 1 2 μ 0 2 π R | E y | 2 r d r d ϕ ,
E y = A J l ( u r a ) exp ( i l ϕ )
E y = A J l ( u ) K l ( w ) K l ( w r a ) exp ( i l ϕ )
A = [ 2 w 2 P l π a 2 V 2 μ | J l 1 ( u ) J l + 1 ( u ) | ] 1 / 2 ,
u = a ( k 2 n c 2 β 2 ) 1 / 2 , w = a ( β 2 k 2 n c l 2 ) 1 / 2 , V = a k ( n c 2 n c l 2 ) 1 / 2 ,
P l ( r R ) P l = R 2 a 2 u 2 V 2 [ K l 1 ( w R a ) K l + 1 ( w R a ) K l 2 ( w R a ) K l 1 ( w ) K l + 1 ( w ) ]
P l ( r R ) P l = 1 R 2 a 2 w 2 V 2 [ J l 1 ( u R a ) J l + 1 ( u R a ) J l 2 ( u R a ) J l 1 ( u ) J l + 1 ( u ) ]

Metrics