Abstract

A demultiplexer composed of a concave diffraction grating and a multimode slab waveguide is attractive since it has many advantageous features. However, this type of demultiplexer has had high demultiplexing losses until now, because the concave diffraction gratings used had poor diffraction efficiency. A silicon concave diffraction grating has been developed to overcome this problem, manufactured by cylindrically bending a thin silicon plane diffraction grating. The diffraction efficiency of this grating was 82% at a blaze wavelength. The five-channel demultiplexer was assembled with this grating as well as with a multimode slab waveguide and a fiber array. Its branching loss was in the 1.4–1.8-dB range.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miki, H. Ishio, IEEE Trans. Commun. COM-26, 1082 (1978).
    [CrossRef]
  2. W. J. Tomlinson, C. Lin, Electron. Lett. 14, 345 (1978).
    [CrossRef]
  3. K. Aoyama, J. Minowa, Appl. Opt. 18, 1253 (1979).
    [CrossRef] [PubMed]
  4. Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
    [CrossRef]
  5. R. Watanabe, K. Nosu, Appl. Opt. 19, 3588 (1980).
    [CrossRef] [PubMed]
  6. H. W. Yen, H. R. Friedrich, R. J. Morrison, G. L. Tangonan, Opt. Lett. 6, 639 (1981).
    [CrossRef] [PubMed]
  7. K. Nosu, R. Watanabe, Electron. Lett. 16, 608 (1980).
    [CrossRef]
  8. R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

1981 (2)

R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

H. W. Yen, H. R. Friedrich, R. J. Morrison, G. L. Tangonan, Opt. Lett. 6, 639 (1981).
[CrossRef] [PubMed]

1980 (3)

R. Watanabe, K. Nosu, Appl. Opt. 19, 3588 (1980).
[CrossRef] [PubMed]

Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

K. Nosu, R. Watanabe, Electron. Lett. 16, 608 (1980).
[CrossRef]

1979 (1)

1978 (2)

T. Miki, H. Ishio, IEEE Trans. Commun. COM-26, 1082 (1978).
[CrossRef]

W. J. Tomlinson, C. Lin, Electron. Lett. 14, 345 (1978).
[CrossRef]

Aoyama, K.

Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

K. Aoyama, J. Minowa, Appl. Opt. 18, 1253 (1979).
[CrossRef] [PubMed]

Friedrich, H. R.

Fujii, Y.

R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

Ishio, H.

T. Miki, H. Ishio, IEEE Trans. Commun. COM-26, 1082 (1978).
[CrossRef]

Lin, C.

W. J. Tomlinson, C. Lin, Electron. Lett. 14, 345 (1978).
[CrossRef]

Miki, T.

T. Miki, H. Ishio, IEEE Trans. Commun. COM-26, 1082 (1978).
[CrossRef]

Minowa, J.

Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

K. Aoyama, J. Minowa, Appl. Opt. 18, 1253 (1979).
[CrossRef] [PubMed]

Morrison, R. J.

Nosu, K.

R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

K. Nosu, R. Watanabe, Electron. Lett. 16, 608 (1980).
[CrossRef]

R. Watanabe, K. Nosu, Appl. Opt. 19, 3588 (1980).
[CrossRef] [PubMed]

Tangonan, G. L.

Tomlinson, W. J.

W. J. Tomlinson, C. Lin, Electron. Lett. 14, 345 (1978).
[CrossRef]

Watanabe, R.

R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

K. Nosu, R. Watanabe, Electron. Lett. 16, 608 (1980).
[CrossRef]

R. Watanabe, K. Nosu, Appl. Opt. 19, 3588 (1980).
[CrossRef] [PubMed]

Yen, H. W.

Appl. Opt. (2)

Electron. Lett. (2)

W. J. Tomlinson, C. Lin, Electron. Lett. 14, 345 (1978).
[CrossRef]

K. Nosu, R. Watanabe, Electron. Lett. 16, 608 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Fujii, K. Aoyama, J. Minowa, IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

IEEE Trans. Commun. (1)

T. Miki, H. Ishio, IEEE Trans. Commun. COM-26, 1082 (1978).
[CrossRef]

Opt. Lett. (1)

Trans. IECE Jpn. (1)

R. Watanabe, K. Nosu, Y. Fujii, Trans. IECE Jpn. J64-B, 1467 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Structure of the demultiplexer using a silicon cylindrical diffraction grating.

Fig. 2
Fig. 2

Arrangement of demultiplexer elements using a concave diffraction grating.

Fig. 3
Fig. 3

Desirable groove configuration of cylindrical diffraction grating.

Fig. 4
Fig. 4

Cross-sectional view of silicon plane diffraction grating.

Fig. 5
Fig. 5

Dependence of diffraction efficiency on normalized stripe width.

Fig. 6
Fig. 6

Bending radius as a function of thickness of a silicon chip.

Fig. 7
Fig. 7

Assembly of silicon cylindrical diffraction grating.

Fig. 8
Fig. 8

Conception of “aberration” in (a) imaging optics and (b) optical demultiplexer.

Fig. 9
Fig. 9

Setup for “aberration” measurement of the silicon cylindrical diffraction grating.

Fig. 10
Fig. 10

Focused image by the silicon cylindrical diffraction grating for (a) single-mode fiber and (b) graded-index fiber inputs.

Fig. 11
Fig. 11

Photograph of the fiber array end facet.

Fig. 12
Fig. 12

Branching characteristics of the demultiplexer with fiber array (a) A and (b) B.

Fig. 13
Fig. 13

Influence of comalike “aberration” to branching characteristics: (a) power distribution; (b) branching characteristics.

Metrics