Abstract

The first (to our knowledge) integrated optical ring resonators to be fabricated using silver ion-exchanged waveguides are reported. Both circular and racetrack shaped resonators have been made, both types being capable of high finesse (>15) and efficiency (>90%). The circular resonators are much more difficult to make, however, requiring a double-diffusion process and precise control of the ion-exchange. For this reason, the racetrack resonators have been the more successful and have behaved exactly as expected from the previous work on losses and directional couplers.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).
  2. M. Miyagi, G. L. Yip, Opt. Quantum Electron. 10, 425 (1978).
    [CrossRef]
  3. T. Itanami, S. Shindo, IEEE Trans. Microwave Theory Tech. MTT-26, 759 (1978).
    [CrossRef]
  4. J. Haavisto, G. A. Pajer, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WI5.
  5. V. Ramaswamy, R. D. Standley, Bell Syst. Tech. J. 57, 2685 (1978).
  6. R. G. Walker, “Design of Ring-Resonators for Integrated Optics Using Silver Ion Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).
  7. R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion Exchange in Glass,” Appl. Opt. in press.
  8. S. Wernick, R. Pinner, Surface Treatment of Aluminum, Part 1 (Robert Draper, Ltd., Teddington, 1972).
  9. W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
    [CrossRef]

1978

M. Miyagi, G. L. Yip, Opt. Quantum Electron. 10, 425 (1978).
[CrossRef]

T. Itanami, S. Shindo, IEEE Trans. Microwave Theory Tech. MTT-26, 759 (1978).
[CrossRef]

V. Ramaswamy, R. D. Standley, Bell Syst. Tech. J. 57, 2685 (1978).

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

1969

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Haavisto, J.

J. Haavisto, G. A. Pajer, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WI5.

Itanami, T.

T. Itanami, S. Shindo, IEEE Trans. Microwave Theory Tech. MTT-26, 759 (1978).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Miyagi, M.

M. Miyagi, G. L. Yip, Opt. Quantum Electron. 10, 425 (1978).
[CrossRef]

Pajer, G. A.

J. Haavisto, G. A. Pajer, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WI5.

Pinner, R.

S. Wernick, R. Pinner, Surface Treatment of Aluminum, Part 1 (Robert Draper, Ltd., Teddington, 1972).

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, R. D. Standley, Bell Syst. Tech. J. 57, 2685 (1978).

Samut, R. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

Shindo, S.

T. Itanami, S. Shindo, IEEE Trans. Microwave Theory Tech. MTT-26, 759 (1978).
[CrossRef]

Standley, R. D.

V. Ramaswamy, R. D. Standley, Bell Syst. Tech. J. 57, 2685 (1978).

Walker, R. G.

R. G. Walker, “Design of Ring-Resonators for Integrated Optics Using Silver Ion Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).

R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion Exchange in Glass,” Appl. Opt. in press.

Wernick, S.

S. Wernick, R. Pinner, Surface Treatment of Aluminum, Part 1 (Robert Draper, Ltd., Teddington, 1972).

Wilkinson, C. D. W.

R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion Exchange in Glass,” Appl. Opt. in press.

Wilkinson, J. A. H.

R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion Exchange in Glass,” Appl. Opt. in press.

Yip, G. L.

M. Miyagi, G. L. Yip, Opt. Quantum Electron. 10, 425 (1978).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2103 (1969).

V. Ramaswamy, R. D. Standley, Bell Syst. Tech. J. 57, 2685 (1978).

IEE J. Microwave Opt. Acoust.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Samut, IEE J. Microwave Opt. Acoust. 2, 134 (1978).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T. Itanami, S. Shindo, IEEE Trans. Microwave Theory Tech. MTT-26, 759 (1978).
[CrossRef]

Opt. Quantum Electron.

M. Miyagi, G. L. Yip, Opt. Quantum Electron. 10, 425 (1978).
[CrossRef]

Other

J. Haavisto, G. A. Pajer, in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981), paper WI5.

R. G. Walker, “Design of Ring-Resonators for Integrated Optics Using Silver Ion Exchanged Waveguides,” Ph.D. Thesis, U. Glasgow (1981).

R. G. Walker, C. D. W. Wilkinson, J. A. H. Wilkinson, “Integrated Optical Waveguiding Structures Made by Silver Ion Exchange in Glass,” Appl. Opt. in press.

S. Wernick, R. Pinner, Surface Treatment of Aluminum, Part 1 (Robert Draper, Ltd., Teddington, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ring resonator pattern. The output end of the waveguide was continued (10 μm wide) for a further 1 cm.

Fig. 2
Fig. 2

Racetrack resonator design. As in the case of the ring, the waveguide was extended 1 cm beyond the resonator.

Fig. 3
Fig. 3

Resonance order m (proportional to equivalent wavelength (λ = mΔλ) plotted against occurrence time during cooling for two measured responses. For comparison, best-fitting exponential and logarithmic curves are also included.

Fig. 4
Fig. 4

Recorded response of racetrack resonator 2A (35-min postbake) during cooling to a log time scale. Finesse ≃14.5. The zero level change is due to the input prism coupler’s temperature sensitivity which caused the background scattered light level to vary.

Fig. 5
Fig. 5

Recorded response of ring resonator (sample 1) showing absorption from the input guide; η ≃ 80%.

Fig. 6
Fig. 6

Photomicrographs of surface scatter from racetrack resonator 1D (no postbake): (a) at resonance; (b) at antiresonance. Finesse = 18.8; η = 76%.

Tables (1)

Tables Icon

Table I Experimental Results of Ring Resonators

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ψ r = ψ 0 n = 0 σ n · exp ( j n β l ) .
Δ f = c n e l ,
ψ 0 = j ψ 1 sin ( ϰ s ) ,
σ = γ cos ( ϰ s ) ,
ψ r r = j ψ 1 sin ( ϰ s ) 1 γ cos ( ϰ s ) ,
[ cos ( ϰ s ) ] opt = γ , ψ r max r = j ψ 1 1 1 γ 2 .
ψ 2 r = ψ 1 cos ( ϰ s ) j γ ψ r r sin ( ϰ s ) ,
ψ 0 = j ψ 1 sin ( α 2 + 1 · ϰ s ) α 2 + 1 ,
Q = 2 π 2 R n e [ log e ( σ ) ] λ 0 = f 0 δ f ,
F = Δ f / δ f ,
F = π / log e ( σ ) .
η = 1 [ cos ( ϰ s ) γ 1 γ cos ( ϰ s ) ] 2 .
n e = n e 0 R ρ ,
Γ T = K / R 2 dB ,
λ = λ 0 λ 1 exp ( t / τ ) ,
λ = λ 1 log ( t + t 0 τ ) ,
t 0 = b c a d a + d b c ,
from Eq . ( 10 b ) σ = exp ( π / F ) , from Eq . ( 11 ) γ = 1 2 ( 4 σ 2 + b 2 ± b ) + overcoupled undercoupled ,
s s 0 = cos 1 ( σ / γ ) cos 1 γ , L 0 = s 0 · π / 2 cos 1 γ .

Metrics