Abstract

A new prism coupler configuration is described which is very simple and reproducible. This device has been used to couple an Ar laser beam into a TE0 single-mode GeO2 thin film waveguide with efficiencies exceeding 92%. Two specific air gap profiles using only one ball bearing and two sets of aluminum films have been examined. The theoretical description and experimental performance of this new type of prism coupler are presented; in both cases the air gap profiles are very close to the theoretically optimum shape, especially for a gap which does not have a mechanical contact point near the input optical beam incidence point on the waveguide. This approach is particularly advantageous for use with a fragile or soft thin film waveguide, since surface damage can more easily be avoided. Theoretical coupling efficiencies of 96.4 and 98.8% are predicted for the particular experimental samples investigated, and measured values of 90 and 92% have been achieved.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
    [CrossRef]
  2. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  3. A. M. Glass, Opt. Eng. 17, 470 (1978).
    [CrossRef]
  4. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [CrossRef] [PubMed]
  5. T. Tamir, Integrated Optics (Springer, Berlin, 1979).
  6. H. Kogelnik, IEEE Trans Microwave Theory Tech. MTT-23, 2 (1975).
    [CrossRef]
  7. H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).
  8. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
    [CrossRef]
  9. P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
    [CrossRef]
  10. R. Ulrich, J. Opt. Soc. Am. 61, 1467 (1971).
    [CrossRef]
  11. G. L. Tangonan, M. K. Barnoski, A. Lee, Appl. Opt. 16, 1795 (1977).
    [CrossRef] [PubMed]
  12. D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
    [CrossRef]
  13. D. Sarid, Appl. Opt. 18, 2921 (1979).
    [CrossRef] [PubMed]
  14. Z. Y. Yin, B. K. Garside, Appl. Opt. 21, 4324 (1982).
    [CrossRef] [PubMed]
  15. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [CrossRef]
  16. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
    [CrossRef]

1982 (1)

1981 (1)

1979 (1)

1978 (2)

D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
[CrossRef]

A. M. Glass, Opt. Eng. 17, 470 (1978).
[CrossRef]

1977 (1)

1975 (1)

H. Kogelnik, IEEE Trans Microwave Theory Tech. MTT-23, 2 (1975).
[CrossRef]

1974 (1)

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

1971 (3)

1970 (4)

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
[CrossRef]

R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
[CrossRef]

Barnoski, M. K.

Cressman, P. J.

D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Garside, B. K.

Glass, A. M.

A. M. Glass, Opt. Eng. 17, 470 (1978).
[CrossRef]

Hammer, J. M.

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Holman, R. L.

D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
[CrossRef]

Kogelnik, H.

H. Kogelnik, IEEE Trans Microwave Theory Tech. MTT-23, 2 (1975).
[CrossRef]

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Lam, D. K. W.

Lee, A.

Martin, R. J.

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

Phillips, W.

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

Sarid, D.

D. Sarid, Appl. Opt. 18, 2921 (1979).
[CrossRef] [PubMed]

D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Sosnowski, T. P.

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

Tamir, T.

T. Tamir, Integrated Optics (Springer, Berlin, 1979).

Tangonan, G. L.

Tien, P. K.

Ulrich, R.

Yin, Z. Y.

Appl. Opt. (5)

Appl. Phys. Lett. (4)

D. Sarid, P. J. Cressman, R. L. Holman, Appl. Phys. Lett. 33, 514 (1978).
[CrossRef]

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, T. P. Sosnowski, Bell Syst. Tech. J. 49, 1602 (1970).

IEEE Trans Microwave Theory Tech. (1)

H. Kogelnik, IEEE Trans Microwave Theory Tech. MTT-23, 2 (1975).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Eng. (1)

A. M. Glass, Opt. Eng. 17, 470 (1978).
[CrossRef]

Other (1)

T. Tamir, Integrated Optics (Springer, Berlin, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Side view of a prism waveguide coupler.

Fig. 2
Fig. 2

Contact prism coupler with one steel ball bearing and two sets of aluminum films.

Fig. 3
Fig. 3

Two sets of aluminum films deposited on the base of a prism.

Fig. 4
Fig. 4

Noncontact prism coupler using one steel ball baring and two sets of aluminum films.

Fig. 5
Fig. 5

Air gaps S(x) vs distance of the input coupling point from the point producing maximum coupling for the air gap of the couplers as determined by h = 1.55 μm, xc = 1.619 mm in the contact case and h = 4.0 μm, h0 = 0.075 μm, xc = 0.725 mm in the noncontact case.

Fig. 6
Fig. 6

Coupling efficiency of a contact coupler, where h = 1.55 μm, xc = 1.619 mm. (a) Normalized theoretical and experimental coupling efficiency with different incident points of light. The maximum coupling efficiencies are 96.4 and 90%, respectively. (b) Experimental coupling efficiency vs deviations of incident angle from resonance angle.

Fig. 7
Fig. 7

Normalized theoretical and experimental coupling efficiency for a noncontact coupler as a function of beam displacement from the optimum coupling position. The maximum coupling efficiencies are 98.8 and 92%, respectively, where h = 4 μm, h0 = 0.075 μm, xc = 0.725mm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S opt ( x ) = k 1 ( β I 2 n 2 2 ) 1 / 2 log e [ h opt 1 ( x ) ] ,
η = | Ω | ν 3 | 2 / ( Ω | Ω ν 3 | ν 3 ) ,
Ω * ( x ) = exp [ k S ( x ) ( β I 2 n 2 2 ) 1 / 2 i k β I ( x a ) ] × exp { a x exp [ 2 k S ( x ) × ( β I 2 n 2 2 ) 1 / 2 ] D d x } ,
ν 3 ( x ) = exp [ i k β I ( x x c ) ( x x c ) 2 / ω 2 ] ,
s 1 ( x ) h x 2 / L 2 ,
θ 1 ( x ) = 2 h x / L 2 .
S 2 ( x ) h 0 + [ ( h h 0 ) x 2 / L 2 ] ,
θ 2 ( x ) = 2 ( h h 0 ) x / L 2 .

Metrics