Abstract

Characteristics of a fiber-optic sensor for the detection of external electric fields are presented. This device utilizes a single-mode fiber that is embedded in a poled vinylidene fluoride–tetrafluoroethylene copolymer film and incorporated as the sensor arm of a Mach-Zehnder interferometer. A low-frequency intrinsic sensitivity of (0.20 ± 0.03) × 10−12 m/V is measured which compares well with our projected theoretical static sensitivity. This sensitivity implies a minimum detectable field of 33 μV/m for a 1.0-km length of activated fiber and a 10−7-rad phase-shift detection capability.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Carome, K. P. Koo, in Proceedings, IEEE Ultrasonics Symposium (IEEE, New York, 1980), pp. 710–712.
  2. K. P. Koo, G. H. Sigel, IEEE J. Quantum Electron. QE-18, 670 (1982).
    [CrossRef]
  3. L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
    [CrossRef]
  4. T. G. Giallorenzi, Opt. Laser Technol. 20, 73 (1981).
    [CrossRef]
  5. Pennwalt Corp., King of Prussia, Pa., 19406.
  6. P. D. DeSouza, M. D. Mermelstein, Appl. Opt. 21, 4214 (1982).
    [CrossRef] [PubMed]
  7. D. E. Gray, Ed. American Institute of Physics Handbook (McGraw-Hill, New York, 1963).
  8. R. Hughes, J. Jarzynski, Appl. Opt. 19, 98 (1980).
    [CrossRef] [PubMed]
  9. P. Bloomfield, Pennwalt Corp.; private communication.
  10. R. G. Kepler, Ann. Rev. Phys. Chem. 29, 497 (1978).
    [CrossRef]
  11. H. Sussner, in Proceedings, 1979 IEEE Ultrasonics Symposium (IEEE, New York, 1979), p. 498.

1982

K. P. Koo, G. H. Sigel, IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

P. D. DeSouza, M. D. Mermelstein, Appl. Opt. 21, 4214 (1982).
[CrossRef] [PubMed]

1981

T. G. Giallorenzi, Opt. Laser Technol. 20, 73 (1981).
[CrossRef]

1980

1978

R. G. Kepler, Ann. Rev. Phys. Chem. 29, 497 (1978).
[CrossRef]

Bloomfield, P.

P. Bloomfield, Pennwalt Corp.; private communication.

Carome, E. F.

E. F. Carome, K. P. Koo, in Proceedings, IEEE Ultrasonics Symposium (IEEE, New York, 1980), pp. 710–712.

DeSouza, P. D.

Donalds, L. J.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

French, W. G.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, Opt. Laser Technol. 20, 73 (1981).
[CrossRef]

Hughes, R.

Jarzynski, J.

Kepler, R. G.

R. G. Kepler, Ann. Rev. Phys. Chem. 29, 497 (1978).
[CrossRef]

Koo, K. P.

K. P. Koo, G. H. Sigel, IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

E. F. Carome, K. P. Koo, in Proceedings, IEEE Ultrasonics Symposium (IEEE, New York, 1980), pp. 710–712.

Mermelstein, M. D.

Mitchell, W. C.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

Sigel, G. H.

K. P. Koo, G. H. Sigel, IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

Sussner, H.

H. Sussner, in Proceedings, 1979 IEEE Ultrasonics Symposium (IEEE, New York, 1979), p. 498.

Swinehard, R. M.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

Wei, T.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

Ann. Rev. Phys. Chem.

R. G. Kepler, Ann. Rev. Phys. Chem. 29, 497 (1978).
[CrossRef]

Appl. Opt.

Electron. Lett.

L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehard, T. Wei, Electron. Lett. 18, 327 (1982).
[CrossRef]

IEEE J. Quantum Electron.

K. P. Koo, G. H. Sigel, IEEE J. Quantum Electron. QE-18, 670 (1982).
[CrossRef]

Opt. Laser Technol.

T. G. Giallorenzi, Opt. Laser Technol. 20, 73 (1981).
[CrossRef]

Other

Pennwalt Corp., King of Prussia, Pa., 19406.

D. E. Gray, Ed. American Institute of Physics Handbook (McGraw-Hill, New York, 1963).

P. Bloomfield, Pennwalt Corp.; private communication.

E. F. Carome, K. P. Koo, in Proceedings, IEEE Ultrasonics Symposium (IEEE, New York, 1980), pp. 710–712.

H. Sussner, in Proceedings, 1979 IEEE Ultrasonics Symposium (IEEE, New York, 1979), p. 498.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of fiber–copolymer field detector and electric fields generated by the capacitor plates.

Fig. 2
Fig. 2

Fiber-optic Mach-Zehnder interferometer with field detector incorporated as the sensing arm. Also shown are the associated signal-processing electronics.

Fig. 3
Fig. 3

Shown are the measured phase-shift amplitudes as a function of the applied field-strength amplitude verifying amplitude-response linearity.

Fig. 4
Fig. 4

Intrinsic sensitivity η(ω) as a function of frequency of a constant-amplitude sinusoidal applied electric field. Peaks presumably arise from the resonant structure of the fiber–copolymer composite. The solid line is drawn as a guide to the eye. The dotted line is static prediction of Eq. (7).

Tables (1)

Tables Icon

Table I Material Parameters Used in Fiber-Optic Electric-Field Sensor Sensitivity Calculation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ψ s = R L R L G 1 | γ 12 | P ω 0 υ 1 ( 0 ) υ 2 ( 0 ) ,
η ( ω ) = δ ψ s ( ω ) ψ s ( t ) t δ E a p ( ω ) ,
η ( 0 ) = η max f ( r 1 , r 2 ) ,
η max = 1 N { 1 1 2 n 2 [ ( P 11 2 P 44 ) + ( σ σ 1 ) ( P 11 P 44 ) ] } d eff ,
f ( r 1 , r 2 ) = 1 1 + [ μ σ ( 1 σ ) μ σ ( 1 σ ) ( r 2 2 r 1 2 1 ) ] 1 ·
d eff = d 31 + d 32 + d 33 2 σ ,
η ( 0 ) = η max g ( r 1 , R ) ,
g ( r 1 , R ) = 2 π 0 π / 2 d θ f ( r 1 , R / cos θ ) .
N = κ κ ( κ κ 1 ) 2 R D ·

Metrics