Abstract

Linear holographic gratings have been developed that can be used for amplitude and phase matching of local oscillator (LO) and signal wave fronts in heterodyne detection with infrared imaging arrays. With these holographic gratings the system’s signal-to-noise ratio and resolution can be maximized, and the LO power dissipation on the focal plane can be minimized. A holographic surface relief pattern multiplexes the LO beam when a single LO laser beam illuminates it. Each beam of this multiplexed set then has the same amplitude shape as and is collinear with each element of the signal wave front illuminating the array.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hull, S. Marcus, in Proceedings, IEEE National Aerospace and Electronics Conference, Dayton (IEEE, New York, 1978), p. 662.
  2. R. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978), Chap. 2.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), p. 445.
  4. R. J. Becherer, W. B. Veldkamp, J. Opt. Soc. Am. 68, 1441A (1978).
  5. H. M. Smith, Principles of Holography (Wiley-Interscience, New York, 1969), p. 49.
  6. R. A. Bartolini, Appl. Opt. 13, 129 (1974).
    [CrossRef] [PubMed]
  7. J. A. Jenney, Appl. Opt. 11, 1371 (1972).
    [CrossRef] [PubMed]
  8. F. Iwata, J. Tsujiuchi, Appl. Opt. 13, 1327 (1974).
    [CrossRef] [PubMed]
  9. S. L. Norman, M. P. Singh, Appl. Opt. 14, 818 (1975).
    [CrossRef] [PubMed]
  10. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
    [CrossRef] [PubMed]
  11. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
    [CrossRef]
  12. U. Killat, D. R. Terrell, Opt. Acta 24, 441 (1977).
    [CrossRef]
  13. R. R. Roberts, T. D. Black, Appl. Opt. 15, 2018 (1976).
    [CrossRef] [PubMed]
  14. W. A. Simpson, W. E. Deeds, Appl. Opt. 9, 499 (1970).
    [CrossRef] [PubMed]
  15. S. Kobayashi, K. Kurihara, Appl. Phys. Lett. 19, 482 (1971).
    [CrossRef]
  16. C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).
  17. J. N. Latta, Appl. Opt. 10, 609 (1971).
    [CrossRef] [PubMed]
  18. R. W. Meier, J. Opt. Soc. Am. 55, 987 (1965).
    [CrossRef]
  19. R. A. Bartolini, D. Karlsons, M. Lurie, RCA Rev. 33, 154 (1972).
  20. E. B. Champagne, J. Opt. Soc. Am. 57, 51 (1967).
    [CrossRef]
  21. L. F. Johnson, G. W. Kammlott, K. A. Ingersoll, Appl. Opt. 17, 1165 (1978).
    [CrossRef] [PubMed]
  22. J. O. Garvey, “Holographic Grating Study,” Report RADCTR-78-279, Rome Air Development Center (Mar.1979).
  23. F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).
  24. F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
    [CrossRef]
  25. A. R. Neureuther, F. H. Dill, in Optical and Acoustical Micro-Electronic, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 233.
  26. W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
    [CrossRef]
  27. M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
    [CrossRef] [PubMed]
  28. A. C. Livanos, A. Katzir, J. B. Shellan, A. Yariv, Appl. Opt. 16, 1633 (1977).
    [CrossRef] [PubMed]
  29. R. A. Bartolini, Appl. Opt. 11, 1275 (1972).
    [CrossRef] [PubMed]
  30. J. A. MacAndrew, Opt. Acta 25, 751 (1978).
    [CrossRef]
  31. A. E. Siegman, Proc. IEEE 54, 1350 (1966).
    [CrossRef]

1978 (3)

R. J. Becherer, W. B. Veldkamp, J. Opt. Soc. Am. 68, 1441A (1978).

J. A. MacAndrew, Opt. Acta 25, 751 (1978).
[CrossRef]

L. F. Johnson, G. W. Kammlott, K. A. Ingersoll, Appl. Opt. 17, 1165 (1978).
[CrossRef] [PubMed]

1977 (4)

A. C. Livanos, A. Katzir, J. B. Shellan, A. Yariv, Appl. Opt. 16, 1633 (1977).
[CrossRef] [PubMed]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

U. Killat, D. R. Terrell, Opt. Acta 24, 441 (1977).
[CrossRef]

1976 (1)

1975 (3)

S. L. Norman, M. P. Singh, Appl. Opt. 14, 818 (1975).
[CrossRef] [PubMed]

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

1974 (3)

1972 (4)

R. A. Bartolini, Appl. Opt. 11, 1275 (1972).
[CrossRef] [PubMed]

J. A. Jenney, Appl. Opt. 11, 1371 (1972).
[CrossRef] [PubMed]

C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).

R. A. Bartolini, D. Karlsons, M. Lurie, RCA Rev. 33, 154 (1972).

1971 (2)

S. Kobayashi, K. Kurihara, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

J. N. Latta, Appl. Opt. 10, 609 (1971).
[CrossRef] [PubMed]

1970 (2)

1967 (1)

1966 (1)

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

1965 (1)

Bartolini, R. A.

Beaulieu, R.

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

Becherer, R. J.

R. J. Becherer, W. B. Veldkamp, J. Opt. Soc. Am. 68, 1441A (1978).

Beesley, M. J.

Belanger, D.

Black, T. D.

Blanchard, M.

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), p. 445.

Castledine, J. G.

Champagne, E. B.

Cormier, M.

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

Decker, C.

C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).

Deeds, W. E.

Dill, F. H.

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

A. R. Neureuther, F. H. Dill, in Optical and Acoustical Micro-Electronic, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 233.

Garvey, J. O.

J. O. Garvey, “Holographic Grating Study,” Report RADCTR-78-279, Rome Air Development Center (Mar.1979).

Harold, H.

C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).

Hauge, P. S.

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

Hornberger, W. P.

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

Hull, R. J.

R. J. Hull, S. Marcus, in Proceedings, IEEE National Aerospace and Electronics Conference, Dayton (IEEE, New York, 1978), p. 662.

Ingersoll, K. A.

Iwata, F.

Jenney, J. A.

Johnson, L. F.

Kammlott, G. W.

Karlsons, D.

R. A. Bartolini, D. Karlsons, M. Lurie, RCA Rev. 33, 154 (1972).

Katzir, A.

Killat, U.

U. Killat, D. R. Terrell, Opt. Acta 24, 441 (1977).
[CrossRef]

Kingston, R.

R. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978), Chap. 2.

Kobayashi, S.

S. Kobayashi, K. Kurihara, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

Kurihara, K.

S. Kobayashi, K. Kurihara, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

Latta, J. N.

Lessard, R. A.

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

Livanos, A. C.

Lurie, M.

R. A. Bartolini, D. Karlsons, M. Lurie, RCA Rev. 33, 154 (1972).

MacAndrew, J. A.

J. A. MacAndrew, Opt. Acta 25, 751 (1978).
[CrossRef]

Marcus, S.

R. J. Hull, S. Marcus, in Proceedings, IEEE National Aerospace and Electronics Conference, Dayton (IEEE, New York, 1978), p. 662.

Meier, R. W.

Neureuther, A. R.

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

A. R. Neureuther, F. H. Dill, in Optical and Acoustical Micro-Electronic, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 233.

Norman, S. L.

Rioux, M.

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Belanger, Appl. Opt. 16, 1876 (1977).
[CrossRef] [PubMed]

Roberts, R. R.

Röhr, H.

C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).

Shaw, J. M.

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

Shellan, J. B.

Siegman, A. E.

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

Simpson, W. A.

Singh, M. P.

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley-Interscience, New York, 1969), p. 49.

Terrell, D. R.

U. Killat, D. R. Terrell, Opt. Acta 24, 441 (1977).
[CrossRef]

Tsang, W.

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

Tsujiuchi, J.

Tuttle, J.

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

Veldkamp, W. B.

R. J. Becherer, W. B. Veldkamp, J. Opt. Soc. Am. 68, 1441A (1978).

Walker, E. J.

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

Wang, S.

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), p. 445.

Yariv, A.

Appl. Opt. (12)

Appl. Phys. Lett. (3)

W. Tsang, S. Wang, Appl. Phys. Lett. 24, 196 (1974).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, Appl. Phys. Lett. 31, 602 (1977).
[CrossRef]

S. Kobayashi, K. Kurihara, Appl. Phys. Lett. 19, 482 (1971).
[CrossRef]

IEEE Trans. Electron Devices (2)

F. H. Dill, W. P. Hornberger, P. S. Hauge, J. M. Shaw, IEEE Trans. Electron Devices ED-22, 451 (1975).

F. H. Dill, A. R. Neureuther, J. Tuttle, E. J. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Acta (2)

U. Killat, D. R. Terrell, Opt. Acta 24, 441 (1977).
[CrossRef]

J. A. MacAndrew, Opt. Acta 25, 751 (1978).
[CrossRef]

Phys. Lett. (1)

C. Decker, H. Harold, H. Röhr, Phys. Lett. 20, 490 (1972).

Proc. IEEE (1)

A. E. Siegman, Proc. IEEE 54, 1350 (1966).
[CrossRef]

RCA Rev. (1)

R. A. Bartolini, D. Karlsons, M. Lurie, RCA Rev. 33, 154 (1972).

Other (6)

J. O. Garvey, “Holographic Grating Study,” Report RADCTR-78-279, Rome Air Development Center (Mar.1979).

H. M. Smith, Principles of Holography (Wiley-Interscience, New York, 1969), p. 49.

R. J. Hull, S. Marcus, in Proceedings, IEEE National Aerospace and Electronics Conference, Dayton (IEEE, New York, 1978), p. 662.

R. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978), Chap. 2.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), p. 445.

A. R. Neureuther, F. H. Dill, in Optical and Acoustical Micro-Electronic, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1974), p. 233.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Microphotograph of the linear twelve-element HgCdTe heterodyne detector array.

Fig. 2
Fig. 2

Heterodyne efficiency loss as a function of detector element for plane wave LO and signal wave fronts.

Fig. 3
Fig. 3

Holographic generation of a multiplexed local oscillator beam.

Fig. 4
Fig. 4

Computergraphic simulation of holographic wave front amplitude distribution.

Fig. 5
Fig. 5

Linear holographic relief image.

Fig. 6
Fig. 6

Formation of a linear holographic grating.

Fig. 7
Fig. 7

Point source coordinate geometry.

Fig. 8
Fig. 8

Local magnification over the length of the twelve-element detector array at the αr = 1.3°, αc = 30° operating point.

Fig. 9
Fig. 9

Mach-Zehnder recording configuration.

Fig. 10
Fig. 10

Scanning electron beam micrograph (SEM) of two surface relief sections. On the left, the exposure is within the dynamic range of the resist (low amplitudes of Fig. 12), on the right (high amplitudes of Fig. 12) the relief profile is clipped by the substrate.

Fig. 11
Fig. 11

Processing steps from a photoresist relief pattern to a hard and durable master.

Fig. 12
Fig. 12

Observed intensity and calculated amplitude profiles for a twelve-element object mask.

Fig. 13
Fig. 13

Intensity scan past a threefold multiplexed 10.6-μm IR local oscillator.

Tables (1)

Tables Icon

Table I Experimental Development Data

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

= | η E LO · E S * d A | 2 η E LO · η E LO * d A E S · E S * d A ,
U s ( x , z ) = m = 0 ± 1 n | U s | exp [ j 2 π x sin ( m θ ) / λ ] exp ( j 2 π z / λ ) ,
η eff = η { sin [ π d / λ sin ( m θ ) ] π d / λ sin ( m θ ) } 2 .
n d 2 λ / θ .
( S / N ) IF = P s η eff h ν B ,
I ( x , y ) = | O ( x , y ) + R ( x , y ) | 2
T ( x , y ) K exp { [ 2 i ξ OR cos ( ϕ 0 β x ) ] } ,
T ( x , y ) = K { J 0 ( a ) + 2 n = 1 ( 1 ) n J 2 n ( a ) cos ( 2 n θ ) + 2 i n = 0 ( 1 ) n + 2 J 2 n + 1 ( a ) cos [ ( 2 n + 1 ) θ ] } ,
C 1 ( x , y ) = R 2 T 0 1 / 2 2 { exp [ i ( O 2 + R 2 + π / 2 ) ] } O exp [ i ϕ ( x , y ) ] ,
ϕ ( x , y ) = 2 π n λ h ( x , y ) .
x b = x b λ b f b | Fourier space .
x IR = x b λ IR f IR
x IR = x b ( λ IR λ b ) ( f IR f b ) .
λ IR sin θ IR = Λ = λ b sin θ b ,
sin β c = μ m ( sin β o ) , cos β c sin α o = μ m ( sin α o cos β o + sin α r ) sin α c .
1 R i = 1 R c ± μ / m 2 ( 1 R o 1 R r ) .
m ( x ) = d x d x and m ( y ) = d y d y ,
α o = α o o + tan 1 ( x / f b ) , α o = α o o + tan 1 ( x / f IR ) ,
m ( x ) = μ f IR mfb { cos [ α o o + tan 1 ( x f b ) ] cos [ α o o + tan 1 ( x f IR ) ] · 1 + ( x f IR ) 2 1 + ( x f b ) 2 · cos [ β o o + tan 1 ( y f b ) ] cos [ β o o + tan 1 ( y f IR ) ] } ,
R s = ( n g n a n g + n a ) 25 % .
z = ( 2 m + 1 ) λ 4 n cos ( θ ) m = 0,1,2 , ,
z = m λ 2 n cos ( θ ) m = 0,1,2 , ,
A ( x , y o ) = n = 0 N 1 δ ( y y o ) δ ( x 2 n b ) .
A ( x , y ) = ( sin 2 π N b x λ f sin 2 π b x λ f ) exp 2 π i y o y λ f .
A ( x , y ) = A ( x , y ) · [ J 1 ( π a x 2 + y 2 λ f ) π a x 2 + y 2 λ f ] .
A IR ( x , y o ) = FT [ A ( x , y ) ] | x = x m ( x ) · [ J 1 ( π d h x 2 + y 0 2 λ f ) π d h x 2 + y o 2 λ f ] .
ϕ < 2.4 λ b f A s ,
ϕ < 10 μ m .

Metrics