Abstract

A projection moire interferometer is presented which was developed to study rotating vibrating objects such as turbine blade assemblies. Three methods of moire interferometry were used in this study: pulsed; time-average; and real time. Real-time moire interferometry used in conjunction with image derotation and strobe techniques is shown to be a viable method of studying traveling wave modes on a rotating disk.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
    [CrossRef]
  2. J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
    [CrossRef]
  3. J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
    [CrossRef]
  4. F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).
  5. D. Post, Opt. Eng. 21, 458 (1982).
    [CrossRef]
  6. O. Kafri, A. Livwat, Appl. Opt. 20, 3098 (1981).
    [CrossRef] [PubMed]
  7. F. P. Chiang, C. J. Lin, Appl. Opt. 18, 1424 (1979).
    [CrossRef] [PubMed]
  8. R. Ritter, H. J. Meyer, Appl. Opt. 19, 1630 (1980).
    [CrossRef] [PubMed]
  9. D. M. Meadows, W. O. Johnson, J. B. Allen, Appl. Opt. 9, 942 (1970).
    [CrossRef] [PubMed]
  10. F. P. Chiang, Proc. Soc. Photo-Opt. Instrum. Eng. 153, 113 (1978).
  11. W. T. Welford, Opt. Acta 16, 371 (1969).
    [CrossRef]
  12. J. P. Sihora, D. W. Taylor, “Deflection of Rotating Marine Propellers Using Projected Grid Moiré Techniques,” presented at Fourth International SESA Congress, Boston (May 1980).
  13. F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).
  14. G. L. Cloud, Exp. Mech. 20, 265 (1980).
    [CrossRef]
  15. J. S. Harris, R. L. Fusek, J. S. Marcheski, Appl. Opt. 18, 2368 (1979).
    [CrossRef] [PubMed]

1982

J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
[CrossRef]

D. Post, Opt. Eng. 21, 458 (1982).
[CrossRef]

1981

O. Kafri, A. Livwat, Appl. Opt. 20, 3098 (1981).
[CrossRef] [PubMed]

J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
[CrossRef]

1980

1979

J. S. Harris, R. L. Fusek, J. S. Marcheski, Appl. Opt. 18, 2368 (1979).
[CrossRef] [PubMed]

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

F. P. Chiang, C. J. Lin, Appl. Opt. 18, 1424 (1979).
[CrossRef] [PubMed]

1978

F. P. Chiang, Proc. Soc. Photo-Opt. Instrum. Eng. 153, 113 (1978).

1970

1969

W. T. Welford, Opt. Acta 16, 371 (1969).
[CrossRef]

Allen, J. B.

Chiang, F. P.

F. P. Chiang, C. J. Lin, Appl. Opt. 18, 1424 (1979).
[CrossRef] [PubMed]

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

F. P. Chiang, Proc. Soc. Photo-Opt. Instrum. Eng. 153, 113 (1978).

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).

Cloud, G. L.

G. L. Cloud, Exp. Mech. 20, 265 (1980).
[CrossRef]

Fusek, R. L.

Harding, K. G.

J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
[CrossRef]

J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
[CrossRef]

Harris, J. S.

Horner, J. E.

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

Johnson, W. O.

Kafri, O.

Lin, C. J.

Livwat, A.

MacBain, J. C.

J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
[CrossRef]

J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
[CrossRef]

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

Marcheski, J. S.

Meadows, D. M.

Meyer, H. J.

Ogg, J. S.

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

Oplinger, D. W.

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).

Parker, B. S.

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).

Post, D.

D. Post, Opt. Eng. 21, 458 (1982).
[CrossRef]

Ritter, R.

Sihora, J. P.

J. P. Sihora, D. W. Taylor, “Deflection of Rotating Marine Propellers Using Projected Grid Moiré Techniques,” presented at Fourth International SESA Congress, Boston (May 1980).

Slepetz, J. M.

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).

Stange, W. A.

J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
[CrossRef]

J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
[CrossRef]

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

Taylor, D. W.

J. P. Sihora, D. W. Taylor, “Deflection of Rotating Marine Propellers Using Projected Grid Moiré Techniques,” presented at Fourth International SESA Congress, Boston (May 1980).

Welford, W. T.

W. T. Welford, Opt. Acta 16, 371 (1969).
[CrossRef]

Appl. Opt.

Exp. Mech

J. C. MacBain, J. E. Horner, W. A. Stange, J. S. Ogg, Exp. Mech 19, 67 (1979).
[CrossRef]

Exp. Mech.

J. C. MacBain, W. A. Stange, K. G. Harding, Exp. Mech. 21, 34 (1981).
[CrossRef]

G. L. Cloud, Exp. Mech. 20, 265 (1980).
[CrossRef]

Opt. Acta

W. T. Welford, Opt. Acta 16, 371 (1969).
[CrossRef]

Opt. Eng.

D. Post, Opt. Eng. 21, 458 (1982).
[CrossRef]

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Opt. Eng. 18, 456 (1979).

J. C. MacBain, W. A. Stange, K. G. Harding, Opt. Eng. 21, 474 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

F. P. Chiang, Proc. Soc. Photo-Opt. Instrum. Eng. 153, 113 (1978).

Other

F. P. Chiang, B. S. Parker, D. W. Oplinger, J. M. Slepetz, Theory and Technology of Moire Methods, Army Materials and Mechanics Research Center, AMMRC SP 80-4 (Apr.1980).

J. P. Sihora, D. W. Taylor, “Deflection of Rotating Marine Propellers Using Projected Grid Moiré Techniques,” presented at Fourth International SESA Congress, Boston (May 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Simple projection moire system.

Fig. 2
Fig. 2

Moire pattern of a vibrating disk recorded with a pulsed ruby laser; sensitivity, 500 μm.

Fig. 3
Fig. 3

Optically filtered pulsed moire pattern; sensitivity, 250 μm.

Fig. 4
Fig. 4

Optically filtered pulsed moire pattern; sensitivity, 125 μm.

Fig. 5
Fig. 5

Unfiltered time-average moire pattern of a vibrating disk.

Fig. 6
Fig. 6

Optically filtered time-average moire pattern of a vibrating disk.

Fig. 7
Fig. 7

Time-average moire pattern of a disk vibrating at 147 Hz; sensitivity, 75 μm.

Fig. 8
Fig. 8

Time-average moire pattern of disk vibrating and rotating: (a) pulse length, 700 μsec; (b) pulse length 300 μsec; (c) pulse length 200 μsec; and (d) pulse length, 100 μsec.

Fig. 9
Fig. 9

Diagram of real-time moire interferometer for studying vibrating rotating objects.

Fig. 10
Fig. 10

Real-time holographic interferogram in static conditions.

Fig. 11
Fig. 11

Real-time holographic intereferogram in rotating conditions.

Fig. 12
Fig. 12

Real-time moire interferogram in static conditions.

Fig. 13
Fig. 13

Real-time moire interferogram in rotating conditions.

Fig. 14
Fig. 14

Real-time moire interferometry pattern sequence of a traveling wave mode pattern on a disk rotating at 2700 rpm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z = N P / ( tan α + tan β ) ,

Metrics