Abstract

Presented in this paper is one of several possible electrooptical engagement array architectures for performing matrix–matrix multiplication using incoherent light. Essential components of this new signal processing device include two dynamic light valves operating in a reflection mode, a 2-D photodetector array, and a single polarizing beam splitter.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mead, L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), pp. 271–292.
  2. R. A. Heinz, J. O. Artman, S. H. Lee, Appl. Opt. 9, 2161 (1970).
    [CrossRef] [PubMed]
  3. D. P. Jablonowski, R. A. Heinz, J. O. Artman, Appl. Opt. 11, 174 (1972).
    [CrossRef] [PubMed]
  4. R. P. Bocker, Appl. Opt. 13, 1670 (1974).
    [CrossRef] [PubMed]
  5. R. P. Bocker, “Optical Matrix–Vector Multiplication and Two-Channel Processing With Photodichroic Crystals,” Ph.D. dissertation, University of Arizona, Tucson (1975) (U. Microfilms 75-26 925).
  6. K. Bromley, Opt. Acta 21, 35 (1974).
    [CrossRef]
  7. M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).
  8. M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
    [CrossRef]
  9. J. W. Goodman, A. R. Dias, L. M. Woody, Opt. Lett. 2, 1 (1978).
    [CrossRef] [PubMed]
  10. D. Psaltis, D. Casasent, M. Carlotto, Opt. Lett. 4, 348 (1979).
    [CrossRef] [PubMed]
  11. H. J. Caulfield, D. Dvore, J. W. Goodman, W. T. Rhodes, Appl. Opt. 20, 2263 (1981).
    [CrossRef] [PubMed]
  12. M. Carlotto, D. Casasent, Appl. Opt. 21, 147 (1982).
    [CrossRef] [PubMed]
  13. H. T. Kung, Proc. Soc. Photo-Opt. Instrum. Eng. 241, 76 (1980).
  14. H. T. Kung, Computer 15, 37 (1982).
    [CrossRef]
  15. J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 27 (1981).
  16. J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 341, 2 (1982).
  17. J. M. Speiser, H. J. Whitehouse, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 2 (1981).
  18. H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
    [CrossRef]
  19. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), pp. 182–182.

1982

M. Carlotto, D. Casasent, Appl. Opt. 21, 147 (1982).
[CrossRef] [PubMed]

H. T. Kung, Computer 15, 37 (1982).
[CrossRef]

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 341, 2 (1982).

1981

J. M. Speiser, H. J. Whitehouse, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 2 (1981).

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 27 (1981).

H. J. Caulfield, D. Dvore, J. W. Goodman, W. T. Rhodes, Appl. Opt. 20, 2263 (1981).
[CrossRef] [PubMed]

1980

H. T. Kung, Proc. Soc. Photo-Opt. Instrum. Eng. 241, 76 (1980).

1979

1978

1977

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

1974

1972

1970

Artman, J. O.

Bocker, R. P.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

R. P. Bocker, Appl. Opt. 13, 1670 (1974).
[CrossRef] [PubMed]

R. P. Bocker, “Optical Matrix–Vector Multiplication and Two-Channel Processing With Photodichroic Crystals,” Ph.D. dissertation, University of Arizona, Tucson (1975) (U. Microfilms 75-26 925).

M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).

Bromley, K.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

K. Bromley, Opt. Acta 21, 35 (1974).
[CrossRef]

M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).

Carlotto, M.

Casasent, D.

Caulfield, H. J.

H. J. Caulfield, D. Dvore, J. W. Goodman, W. T. Rhodes, Appl. Opt. 20, 2263 (1981).
[CrossRef] [PubMed]

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

Conway, L.

C. Mead, L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), pp. 271–292.

Dias, A. R.

Dvore, D.

Foster, M. J.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), pp. 182–182.

Goodman, J. W.

Heinz, R. A.

Horvitz, S.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

Jablonowski, D. P.

Kung, H. T.

H. T. Kung, Computer 15, 37 (1982).
[CrossRef]

H. T. Kung, Proc. Soc. Photo-Opt. Instrum. Eng. 241, 76 (1980).

Lee, S. H.

Louie, A.

M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).

Mead, C.

C. Mead, L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), pp. 271–292.

Monahan, M. A.

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).

Psaltis, D.

Rhodes, W. T.

H. J. Caulfield, D. Dvore, J. W. Goodman, W. T. Rhodes, Appl. Opt. 20, 2263 (1981).
[CrossRef] [PubMed]

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

Speiser, J. M.

J. M. Speiser, H. J. Whitehouse, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 2 (1981).

Symanski, J. J.

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 341, 2 (1982).

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 27 (1981).

Whitehouse, H. J.

J. M. Speiser, H. J. Whitehouse, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 2 (1981).

Woody, L. M.

Appl. Opt.

Computer

H. T. Kung, Computer 15, 37 (1982).
[CrossRef]

Opt. Acta

K. Bromley, Opt. Acta 21, 35 (1974).
[CrossRef]

Opt. Commun.

H. J. Caulfield, W. T. Rhodes, M. J. Foster, S. Horvitz, Opt. Commun. 40, 86 (1981).
[CrossRef]

Opt. Lett.

Proc. IEEE

M. A. Monahan, K. Bromley, R. P. Bocker, Proc. IEEE 65, 121 (1977).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

H. T. Kung, Proc. Soc. Photo-Opt. Instrum. Eng. 241, 76 (1980).

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 27 (1981).

J. J. Symanski, Proc. Soc. Photo-Opt. Instrum. Eng. 341, 2 (1982).

J. M. Speiser, H. J. Whitehouse, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 2 (1981).

Other

C. Mead, L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, Mass., 1980), pp. 271–292.

M. A. Monahan, R. P. Bocker, K. Bromley, A. Louie, in Digest of the International Optical Computing Conference Digest, IEEE Catalog 75-CH0941-5C (IEEE, New York, 1975).

R. P. Bocker, “Optical Matrix–Vector Multiplication and Two-Channel Processing With Photodichroic Crystals,” Ph.D. dissertation, University of Arizona, Tucson (1975) (U. Microfilms 75-26 925).

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), pp. 182–182.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical engagement matrix–matrix multiplier using sliding optical transparencies. (Initial State.)

Fig. 2
Fig. 2

Optical engagement matrix–matrix multiplier using sliding optical transparencies. (Final State.)

Fig. 3
Fig. 3

Key components of a solid-state optical engagement array matrix–matrix multiplier.

Fig. 4
Fig. 4

Data handling in the optical engagement array processor.

Fig. 5
Fig. 5

Polarizing beam splitter with support optics.

Fig. 6
Fig. 6

Architectures for performing (a) basic matrix–matrix multiplication AB, (b) the matrix operation ABC, (c) iterative processing using feedback.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] ,
AB = C ,
c i k = j = 1 3 a i j b j k i , k = 1,2,3.
ABC = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] ,

Metrics