Abstract

Fabrication and testing of a kinoform filter is described, for use in a real-time incoherent optical processor designed for track recognition in high-energy physics experiments. Composition of the filter as a mosaic of kinoforms with different random diffusers improves the quality of the restoration.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.
  2. D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.
  3. W. H. Lee, Prog. Opt. 16, 119 (1978).
    [CrossRef]
  4. L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
    [CrossRef]
  5. N. C. Gallagher, B. Liu, Optik 42, 65 (1975).
  6. N. C. Gallagher, B. Liu, Appl. Opt. 12, 2328 (1973).
    [CrossRef] [PubMed]
  7. H. Akhahori, Appl. Opt. 12, 2336 (1973).
    [CrossRef]
  8. J. J. Clair, C. I. Abitbol, Prog. Opt. 16, 73 (1978).
  9. R. Hauck, “Diplomarbeit, 1976,” Physical Institute Erlangen-Nurnberg, Germany.
  10. L. P. Yaroslavskii, N. S. Merzlyakov, Method of Digital Holography (Consultants Bureau, New York, 1981).
  11. P. F. Grosso, A. A. Tarnowski, Proc. Soc. Photo-Opt. Instrum. Eng. 200, 187 (1979).
  12. R. L. Van Renesse, F. A. J. Bouts, Optik 38, 156 (1973).
  13. C. E. K. Mees, The Theory of the Photographic Process (Macmillan, New York, 1962).

1979

P. F. Grosso, A. A. Tarnowski, Proc. Soc. Photo-Opt. Instrum. Eng. 200, 187 (1979).

1978

W. H. Lee, Prog. Opt. 16, 119 (1978).
[CrossRef]

J. J. Clair, C. I. Abitbol, Prog. Opt. 16, 73 (1978).

1975

N. C. Gallagher, B. Liu, Optik 42, 65 (1975).

1973

1969

L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

Abitbol, C. I.

J. J. Clair, C. I. Abitbol, Prog. Opt. 16, 73 (1978).

Akhahori, H.

Ambs, P.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.

Bouts, F. A. J.

R. L. Van Renesse, F. A. J. Bouts, Optik 38, 156 (1973).

Clair, J. J.

J. J. Clair, C. I. Abitbol, Prog. Opt. 16, 73 (1978).

Cleland, W. E.

W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

Gallagher, N. C.

N. C. Gallagher, B. Liu, Optik 42, 65 (1975).

N. C. Gallagher, B. Liu, Appl. Opt. 12, 2328 (1973).
[CrossRef] [PubMed]

Grosso, P. F.

P. F. Grosso, A. A. Tarnowski, Proc. Soc. Photo-Opt. Instrum. Eng. 200, 187 (1979).

Hauck, R.

R. Hauck, “Diplomarbeit, 1976,” Physical Institute Erlangen-Nurnberg, Germany.

Hirsh, P. M.

L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

Jordon, J. A.

L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

Kraus, D. E.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.

Lee, W. H.

W. H. Lee, Prog. Opt. 16, 119 (1978).
[CrossRef]

Lesem, L. B.

L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

Liu, B.

N. C. Gallagher, B. Liu, Optik 42, 65 (1975).

N. C. Gallagher, B. Liu, Appl. Opt. 12, 2328 (1973).
[CrossRef] [PubMed]

Mees, C. E. K.

C. E. K. Mees, The Theory of the Photographic Process (Macmillan, New York, 1962).

Merzlyakov, N. S.

L. P. Yaroslavskii, N. S. Merzlyakov, Method of Digital Holography (Consultants Bureau, New York, 1981).

Santucci, F. W.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

Tarnowski, A. A.

P. F. Grosso, A. A. Tarnowski, Proc. Soc. Photo-Opt. Instrum. Eng. 200, 187 (1979).

Thompson, J. A.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.

Van Renesse, R. L.

R. L. Van Renesse, F. A. J. Bouts, Optik 38, 156 (1973).

Yaroslavskii, L. P.

L. P. Yaroslavskii, N. S. Merzlyakov, Method of Digital Holography (Consultants Bureau, New York, 1981).

Appl. Opt.

IBM J. Res. Dev.

L. B. Lesem, P. M. Hirsh, J. A. Jordon, IBM J. Res. Dev. 13, 150 (1969).
[CrossRef]

Optik

N. C. Gallagher, B. Liu, Optik 42, 65 (1975).

R. L. Van Renesse, F. A. J. Bouts, Optik 38, 156 (1973).

Proc. Soc. Photo-Opt. Instrum. Eng.

P. F. Grosso, A. A. Tarnowski, Proc. Soc. Photo-Opt. Instrum. Eng. 200, 187 (1979).

Prog. Opt.

W. H. Lee, Prog. Opt. 16, 119 (1978).
[CrossRef]

J. J. Clair, C. I. Abitbol, Prog. Opt. 16, 73 (1978).

Other

R. Hauck, “Diplomarbeit, 1976,” Physical Institute Erlangen-Nurnberg, Germany.

L. P. Yaroslavskii, N. S. Merzlyakov, Method of Digital Holography (Consultants Bureau, New York, 1981).

W. E. Cleland, D. E. Kraus, J. A. Thompson, P. Ambs, “Optical Trigger Processor for High Energy Physics,” submitted to Nucl. Instrum. Methods; HEP OP-26 Physics Dept., U. Pittsburgh.

D. E. Kraus, W. E. Cleland, F. W. Santucci, J. A. Thompson, P. Ambs, “Incoherent Optical Processor for High-Speed Digital Data Filtering,” submitted to Opt. Eng.; HEP 02-28 Physics Dept., U. Pittsburgh.

C. E. K. Mees, The Theory of the Photographic Process (Macmillan, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Scale drawing of the processor showing the optical elements of the processor. L1 (f = 79 mm) is the aspheric input lens, and L2 (f = 254 mm) is the output lens. The filter is the kinoform described in the text.

Fig. 2
Fig. 2

Photograph of the processor. From left to right are the input plane composed of a matrix of optical fibers driven by LEDs, the lens system, the kinoform, and the photodetector.

Fig. 3
Fig. 3

Schematic diagram of a portion of the high-energy physics experiment in which the optical processor was inserted. A track which must be recognized as valid by the optical processor is represented by its hits in the four detector planes. Below the drawing is the corresponding Boolean equation which defines the PSF of the filter.

Fig. 4
Fig. 4

Diagram of the PSF of the kinoform. Each row corresponds to a detector plane of the experiment. The pattern is sampled on a 128 × 128 grid whose size is 0.25 mm in the restoration plane. The central order and the complex conjugate appear only if the kinoform is not perfect.

Fig. 5
Fig. 5

Flow diagram of the program which simulates the restoration of the kinoform.

Fig. 6
Fig. 6

Representation of the actual kinoform mosaic for the 9-dot pattern. The filter has 70 × 70 single holograms grouped in 5 × 5 elements with the same diffuser. Ten different diffusers (numbered from 0 to 9) with different starting values of the random number generator are used. This is done to improve the quality of the restoration as discussed in the text.

Fig. 7
Fig. 7

Photograph of the restoration of a kinoform which is phase matched for the wavelength of a He–Ne laser. The central order and the complex conjugate are too faint to be recorded.

Fig. 8
Fig. 8

Photograph of the restoration of the kinoform mosaic in the output plane of the processor when only one fiber (200-μm diam) is driven by an infrared LED (820 nm). The two patterns of Fig. 8(a) (9 dots) or Fig. 8(b) (10 dots) corresponding to different logical conditions for the track to be recognized are shown. The dots are convolved with the image of the optical fiber (200-μm diam) magnified by the optical system. A central order point created by phase mismatch due to the spectral width of the LED exists but does not impair the performance of the processor.

Fig. 9
Fig. 9

Microphotograph of the hologram before bleaching. The hologram was written with an electron beam recorder with a spot size of 5 yum and ten grey levels. The boundary between the 5 × 5 hologram arrays with different diffusers is indicated.

Fig. 10
Fig. 10

Relation between the phase shift after bleaching and the prebleached optical density. The data are for an Agfa-Gevaert 10E75 holographic plate developed in D19 and bleached with HgCl2 and illuminated by a He–Ne Laser. For this curve, a prehardened emulsion12 was used.

Fig. 11
Fig. 11

Four kinoforms made by a single contact print of a grey-level master with a grey scale superposed. The quality of the restoration is used to determine the correct exposure for the final kinoform. Photographs of the restoration for different exposures are shown: (a) underexposure, resulting in a large phase mismatch; (b) slight underexposure, giving a small phase mismatch; (c) correct exposure, for which the restoration shows no conjugate image and no zero order; (d) overexposure, resulting in a phase mismatch.

Fig. 12
Fig. 12

Results of the analysis of the data collected during experiment 702. Digitized output from one processor detector channel for different numbers of valid hits in the input plane.

Tables (3)

Tables Icon

Table I Comparison Between the Simulation and the Restoration of the Kinoform Forming a 10-Dot Pattern

Tables Icon

Table II Simulation of the 9-Dot Pattern Kinoform With Different Diffusers

Tables Icon

Table III Intensity of the Dots of the Restoration of the Kinoform Mosaic Used in the Processor

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( X , Y ) exp [ j ψ ( X , Y ) ] = + f ( x , y ) exp [ j ϕ ( x , y ) ] × exp { j 2 π [ ( x X + y Y ) / λ d ] } d x d y ,
F ( K , L ) = 1 N M k = 0 N 1 l = 0 M 1 f ( k , l ) exp [ j 2 π ( k K / N + 1 L / M ) ] ,

Metrics