Abstract

Absorption of 9.6-μm CO2 laser radiation by CO2 at temperatures between 296 and 625 K has been measured at a pressure of 200 Torr. Experimental results for the R10—R26 and P10—P28 transitions have been obtained and compared with computed values of absorption. The relative optical broadening coefficients due to He and N2 have been measured on the R16—R22 and P16—P22 transitions over the same temperature range.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ely, T. K. McCubbin, Appl. Opt. 9, 1230 (1970).
    [CrossRef] [PubMed]
  2. S. A. Munjee, W. H. Christiansen, Appl. Opt. 12, 993 (1973).
    [CrossRef] [PubMed]
  3. R. L. Leonard, Appl. Opt. 13, 1920 (1974).
    [CrossRef] [PubMed]
  4. A. R. Strilchuk, A. A. Offenberger, Appl. Opt. 13, 2643 (1974).
    [CrossRef] [PubMed]
  5. A. M. Robinson, N. Sutton, Appl. Opt. 16, 2632 (1977).
    [CrossRef] [PubMed]
  6. A. M. Robinson, N. Sutton, Appl. Opt. 18, 378 (1979).
    [CrossRef] [PubMed]
  7. A. M. Robinson, E. F. Girczyc, Appl. Opt. 19, 1969 (1980).
    [CrossRef] [PubMed]
  8. A good review of calculations of gain and absorption in CO2 may be found in J. C. Goldstein, “Calculation of Small Signal Gain Coefficients in CO2,” Los Alamos Scientific Laboratory report LA-UR-79-1149 (1979).
  9. A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
    [CrossRef]
  10. P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
    [CrossRef]
  11. C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).
  12. R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).
  13. C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).
  14. All CO2 energy levels are designated using the notation of the AFGL 1980 atmospheric absorption line parameters compilation, described in L. S. Rothman, Appl. Opt. 20, 791 (1981).
    [CrossRef] [PubMed]
  15. A. M. Robinson, J. Weiss, Can. J. Phys. 60, 1656 (1982).
    [CrossRef]
  16. C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
    [CrossRef]
  17. A. D. Devir, U. P. Oppenheim, Appl. Opt. 8, 2121 (1969).
    [CrossRef] [PubMed]
  18. E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974).
    [CrossRef]
  19. J. Topping, Errors of Observation and Their Treatment (Chapman & Hall, London, 1972), pp. 73–74.

1982 (1)

A. M. Robinson, J. Weiss, Can. J. Phys. 60, 1656 (1982).
[CrossRef]

1981 (1)

1980 (2)

A. M. Robinson, E. F. Girczyc, Appl. Opt. 19, 1969 (1980).
[CrossRef] [PubMed]

C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

1979 (1)

1978 (1)

P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
[CrossRef]

1977 (1)

1975 (1)

A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
[CrossRef]

1974 (3)

1973 (1)

1970 (1)

1969 (2)

A. D. Devir, U. P. Oppenheim, Appl. Opt. 8, 2121 (1969).
[CrossRef] [PubMed]

C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).

1966 (2)

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

Alcock, A. J.

A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
[CrossRef]

Barchewitz, P.

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

Bourbonneux, F.

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

Bradley, L. C.

C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Christiansen, W. H.

Cousin, C.

C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).

Devir, A. D.

Ely, R.

Farrenq, R.

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

Fedosejevs, R.

A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
[CrossRef]

Freed, C.

C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Girczyc, E. F.

Goldstein, J. C.

A good review of calculations of gain and absorption in CO2 may be found in J. C. Goldstein, “Calculation of Small Signal Gain Coefficients in CO2,” Los Alamos Scientific Laboratory report LA-UR-79-1149 (1979).

Kruger, C.

E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974).
[CrossRef]

Lachambre, J.-L.

P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
[CrossRef]

Lavigne, P.

P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
[CrossRef]

Leonard, R. L.

McCubbin, T. K.

Meyer, C.

C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).

Mitchner, M.

E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974).
[CrossRef]

Munjee, S. A.

Murray, E. R.

E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974).
[CrossRef]

O’Donnell, R. G.

C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

Offenberger, A. A.

Oppenheim, U. P.

Otis, G.

P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
[CrossRef]

Robinson, A. M.

Rossetti, C.

C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

Rothman, L. S.

Strilchuk, A. R.

Sutton, N.

Topping, J.

J. Topping, Errors of Observation and Their Treatment (Chapman & Hall, London, 1972), pp. 73–74.

Walker, A. C.

A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
[CrossRef]

Weiss, J.

A. M. Robinson, J. Weiss, Can. J. Phys. 60, 1656 (1982).
[CrossRef]

Appl. Opt. (9)

Appl. Phys. Lett. (1)

E. R. Murray, C. Kruger, M. Mitchner, Appl. Phys. Lett. 24, 180 (1974).
[CrossRef]

C. R. Acad. Sci. Ser. B (3)

C. Rossetti, F. Bourbonneux, R. Farrenq, P. Barchewitz, C. R. Acad. Sci. Ser. B 262, 1684 (1966).

R. Farrenq, C. Rossetti, F. Bourbonneux, P. Barchewitz, C. R. Acad. Sci. Ser. B 263, 241 (1966).

C. Cousin, C. Rossetti, C. Meyer, C. R. Acad. Sci. Ser. B 268, 1640 (1969).

Can. J. Phys. (1)

A. M. Robinson, J. Weiss, Can. J. Phys. 60, 1656 (1982).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Freed, L. C. Bradley, R. G. O’Donnell, IEEE J. Quantum Electron. QE-16, 1195 (1980).
[CrossRef]

A. J. Alcock, R. Fedosejevs, A. C. Walker, IEEE J. Quantum Electron. QE-11, 767 (1975).
[CrossRef]

J. Appl. Phys. (1)

P. Lavigne, J.-L. Lachambre, G. Otis, J. Appl. Phys. 49, 3714 (1978).
[CrossRef]

Other (2)

J. Topping, Errors of Observation and Their Treatment (Chapman & Hall, London, 1972), pp. 73–74.

A good review of calculations of gain and absorption in CO2 may be found in J. C. Goldstein, “Calculation of Small Signal Gain Coefficients in CO2,” Los Alamos Scientific Laboratory report LA-UR-79-1149 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Experimental and calculated values of absorption coefficient k at T = 620 K over the R and P branches of the 9.6-μm CO2 transition.

Tables (4)

Tables Icon

Table I Coefficients of Cubic Polynomial of k vs T, 9.6-μm Transition

Tables Icon

Table II Coefficients of Cubic Polynomial of T vs k, 9.6-μm Transition

Tables Icon

Table III Percentage Contribution to Calculated Absorption Coefficient at T = 620 K

Tables Icon

Table IV Temperature-Averaged Relative Optical Broadening Coefficients. 9.6-μm Transition

Metrics