Abstract

A pulsed dual-wavelength dual-CO2-laser differential-absorption lidar (DIAL) system has been developed which permits simultaneous heterodyne and direct detection of the same lidar returns. This system has been used to make an experimental comparison of the SNRs and statistical and temporal characteristics of the DIAL returns from several topographic targets. These results were found to be in general agreement with theory and were used to quantify the relative merits of the two detection techniques. The measured parameter values were applied to an analytical treatment to predict system trade-offs for the remote sensing of atmospheric species, with application to both path-averaged and range-resolved measurements.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, Opt. Quantum Electron. 17, 147 (1975).
    [CrossRef]
  2. J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979).
    [CrossRef] [PubMed]
  3. E. R. Murray, J. E. van der Laan, Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  4. K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  5. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, Appl. Opt. 20, 545 (1981); R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  6. W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
    [CrossRef]
  7. S. Lundqvist, C. O. Faelt, U. Persson, B. Marthinsson, S. T. Eng, Appl. Opt. 20, 2534 (1981).
    [CrossRef] [PubMed]
  8. R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64, Oct.1980.
  9. P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.
  10. B. J. Rye, Appl. Opt. 17, 3862 (1978).
    [CrossRef] [PubMed]
  11. N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
    [CrossRef]
  12. D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  13. D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 174 (1981); D. L. Spears, “IR Detectors: Heterodyne and Direct,” Technical Digest of Workshop on Optical and Laser Remote Sensing, Monterey, 9–11 Feb. (1982).
  14. R. A. Brandewie, W. C. Davis, Appl. Opt. 11, 1526 (1972).
    [CrossRef] [PubMed]
  15. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).
  16. J. Y. Wang, Appl. Opt. 21, 464 (1982).
    [CrossRef] [PubMed]
  17. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
    [CrossRef] [PubMed]
  18. C. M. McIntyre, M. H. Lee, J. H. Churnside, J. Opt. Soc. Am. 70, 1084 (1980).
    [CrossRef]
  19. J. F. Holmes, M. H. Lee, J. R. Kerr, J. Opt. Soc. Am. 70, 355 (1980).
    [CrossRef]
  20. S. F. Clifford, R. J. Hill, J. Opt. Soc. Am. 71, 112 (1981).
    [CrossRef]
  21. E. Jakeman, P. N. Pusey, Phys. Rev. Lett. 40, 546 (1978).
    [CrossRef]
  22. J. H. Shapiro, B. A. Capron, R. C. Harney, Appl. Opt. 20, 3292 (1981); J. H. Shapiro, “Target Detection with a Direct-Detection Optical Radar,” Project Report TST-27, MIT Lincoln Laboratory, Nov.1978, ADA No. 065 627.
    [CrossRef] [PubMed]
  23. For a negative exponential distribution, the value of the standard deviation equals that of the mean; therefore, the normalized standard deviation is 1. This is equivalent to the statement that the SNR = 1 since, as in Ref. (22), the voltage SNR may be defined as the ratio of the mean value divided by the standard deviation.
  24. N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  25. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.
  26. G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), p. 100; N. George, A. Jain, Appl. Phys. 4, 201 (1974).
    [CrossRef]
  27. D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
    [CrossRef]
  28. N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)
  29. N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
    [CrossRef] [PubMed]
  30. N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]
  31. A. Mayer, J. Comera, H. Charpenties, C. Jaussaud, Appl. Opt. 17, 391 (1978).
    [CrossRef] [PubMed]
  32. R. J. Hull, MIT Lincoln Laboratory; private communication; CO2 lidar range-resolved heterodyne detection of atmospheric aerosols.
  33. J. L. Bufton, NASA Goddard; private communication; CO2 lidar range-resolved direct detection of atmospheric aerosols.
  34. Detector arrays may be used in heterodyne-detection lidar to reduce the effects of speckle-induced fluctuations. For the case of an optimized detection system as in Refs. 8 and 9, the reduction in σn2 is predicted to be offset by a corresponding decrease in SNR; however, for a lidar system in which σn is dominated by atmospheric effects rather than being related to SNR, relative detection advantages can be gained from the use of a detector array.

1982

1981

1980

1979

J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979).
[CrossRef] [PubMed]

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

1978

1977

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

1975

R. L. Byer, Opt. Quantum Electron. 17, 147 (1975).
[CrossRef]

1972

Asai, K.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Bair, C. H.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.

Beck, R.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

Brandewie, R. A.

Brockman, P.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.

Bufton, J. L.

J. L. Bufton, R. W. Stewart, C. Weng, Appl. Opt. 18, 3363 (1979).
[CrossRef] [PubMed]

J. L. Bufton, NASA Goddard; private communication; CO2 lidar range-resolved direct detection of atmospheric aerosols.

Byer, R. L.

R. L. Byer, Opt. Quantum Electron. 17, 147 (1975).
[CrossRef]

Capron, B. A.

Charpenties, H.

Churnside, J. H.

Clifford, S. F.

Comera, J.

Davis, W. C.

DeFeo, W. E.

Eng, S. T.

Englisch, W.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

Faelt, C. O.

Grant, W. B.

Gurs, K.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

Hardesty, R. M.

R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, Appl. Opt. 20, 3763 (1981).
[CrossRef] [PubMed]

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64, Oct.1980.

Harney, R. C.

Hess, R. V.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.

Hill, R. J.

Holmes, J. F.

Hufnagel, R. E.

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

Hull, R. J.

R. J. Hull, MIT Lincoln Laboratory; private communication; CO2 lidar range-resolved heterodyne detection of atmospheric aerosols.

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jakeman, E.

E. Jakeman, P. N. Pusey, Phys. Rev. Lett. 40, 546 (1978).
[CrossRef]

Jaussaud, C.

Keeler, R. J.

Kerr, J. R.

Killinger, D. K.

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

Lee, M. H.

Lundqvist, S.

Marthinsson, B.

Mayer, A.

McDougal, D. S.

McIntyre, C. M.

Menyuk, C. R.

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)

Menyuk, N.

N. Menyuk, D. K. Killinger, W. E. DeFeo, Appl. Opt. 21, 2275 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, Appl. Opt. 21, 3377 (1982).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)

Menzies, R. T.

Moulton, P. F.

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Murray, E. R.

Parry, G.

G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), p. 100; N. George, A. Jain, Appl. Phys. 4, 201 (1974).
[CrossRef]

Persson, U.

Post, M. J.

Pusey, P. N.

E. Jakeman, P. N. Pusey, Phys. Rev. Lett. 40, 546 (1978).
[CrossRef]

Richter, R. A.

Rye, B. J.

Shapiro, J. H.

Shumate, M. S.

Spears, D. L.

D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 174 (1981); D. L. Spears, “IR Detectors: Heterodyne and Direct,” Technical Digest of Workshop on Optical and Laser Remote Sensing, Monterey, 9–11 Feb. (1982).

Staton, L. D.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.

Stewart, R. W.

van der Laan, J. E.

Wang, J. Y.

Weng, C.

Wiesemann, W.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

Appl. Opt.

Appl. Phys.

W. Wiesemann, R. Beck, W. Englisch, K. Gurs, Appl. Phys. 15, 257 (1977).
[CrossRef]

Appl. Phys. Lett.

K. Asai, T. Itabe, T. Igarashi, Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

D. K. Killinger, N. Menyuk, Appl. Phys. Lett. 38, 968 (1981).
[CrossRef]

IEEE J. Quantum Electron.

D. K. Killinger, N. Menyuk, IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Opt. Quantum Electron.

R. L. Byer, Opt. Quantum Electron. 17, 147 (1975).
[CrossRef]

Phys. Rev. Lett.

E. Jakeman, P. N. Pusey, Phys. Rev. Lett. 40, 546 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

D. L. Spears, Proc. Soc. Photo-Opt. Instrum. Eng. 300, 174 (1981); D. L. Spears, “IR Detectors: Heterodyne and Direct,” Technical Digest of Workshop on Optical and Laser Remote Sensing, Monterey, 9–11 Feb. (1982).

Rev. Sci. Instrum.

N. Menyuk, P. F. Moulton, Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Other

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground-Based Humidity Profiling,” NOAA Tech. Memo. ERL-WPL-64, Oct.1980.

P. Brockman, R. V. Hess, L. D. Staton, C. H. Bair, “DIAL with Heterodyne Detection Including Speckle Noise,” NASA Tech. Paper 1725, Aug.1980.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer, New York, 1978).

N. Menyuk, D. K. Killinger, C. R. Menyuk (to be submitted for publication, Appl. Opt.)

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), p. 100; N. George, A. Jain, Appl. Phys. 4, 201 (1974).
[CrossRef]

For a negative exponential distribution, the value of the standard deviation equals that of the mean; therefore, the normalized standard deviation is 1. This is equivalent to the statement that the SNR = 1 since, as in Ref. (22), the voltage SNR may be defined as the ratio of the mean value divided by the standard deviation.

R. J. Hull, MIT Lincoln Laboratory; private communication; CO2 lidar range-resolved heterodyne detection of atmospheric aerosols.

J. L. Bufton, NASA Goddard; private communication; CO2 lidar range-resolved direct detection of atmospheric aerosols.

Detector arrays may be used in heterodyne-detection lidar to reduce the effects of speckle-induced fluctuations. For the case of an optimized detection system as in Refs. 8 and 9, the reduction in σn2 is predicted to be offset by a corresponding decrease in SNR; however, for a lidar system in which σn is dominated by atmospheric effects rather than being related to SNR, relative detection advantages can be gained from the use of a detector array.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of pulsed dual-wavelength dual-CO2-laser differential-absorption lidar (DIAL) system providing simultaneous heterodyne and direct detection of the lidar returns.

Fig. 2
Fig. 2

CRT display showing dual-laser lidar returns from a target at a range of 2.7 km (time of flight of 17 μsec). Top trace is the direct-detection returns, and the bottom trace is the heterodyne-detection returns; the transmitted laser pulse at zero delay time is also evident in the bottom trace. Temporal separation between lasers 1 and 2 was 5 μsec.

Fig. 3
Fig. 3

Computer display showing temporal history and statistical distribution (histogram) of the lidar returns from a diffuse target (metal building) at a range of 2.7 km. The prf of the lidar was ~10 Hz.

Fig. 4
Fig. 4

Temporal history and statistical distribution of the lidar returns from a 1-in. retroreflector at a range of 2.7 km; prf ≈ 10 Hz.

Fig. 5
Fig. 5

Temporal pulse-pair cross-correlation coefficient as a function of pulse separation time between lasers 1 and 2 for heterodyne-detection lidar returns from a diffuse target at a range of 2.7 km. The wavelengths of the two lasers were the same, the P(20) line at 10.532 μm.

Fig. 6
Fig. 6

Standard deviation in the estimate of the mean of the lidar returns as a function of the number of pulses integrated for returns from a diffuse target at a range of 2.7 km.

Fig. 7
Fig. 7

Temporal autocorrelation coefficient of the lidar returns (prf ≈ 10 Hz) as a function of temporal separation between the measurements.

Fig. 8
Fig. 8

Calculated minimum detectable path-averaged concentration of ethylene, Nmin, as a function of range for heterodyne- and direct-detection DIAL.

Fig. 9
Fig. 9

Calculated minimum detectable range-resolved concentration of ethylene, Nmin, as a function of range. Range resolution is 500 m.

Tables (2)

Tables Icon

Table I Measured Fluctuation Level (Standard Deviation) of Lidar Returns From Targets at a Range of 2.7 km

Tables Icon

Table II Measured Cross-Correlation Coefficient ρ at Short Delay Times for Dual-Laser Lidar Returns (Target Range 2.7 km)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P N h ν B / η ,
P R = [ R T ρ A K exp ( 2 β R ) ] / π R 2 ,
N min ( NEP ) π R / [ 2 ρ σ a K A P T exp ( 2 β R ) ] ,
N min σ n / ( 2 σ a R ) ,

Metrics