Abstract

The eigenpolarizations and resonant frequencies are derived for a circular dielectric waveguide resonator (EH11 mode) terminated by perfectly reflecting metallic rooftop mirrors. It is demonstrated that, in the far-IR region, circularly polarized helical standing waves result from an arbitrary angular misalignment of the rooftop creases. Further, the right and left circularly polarized modes have different resonant frequencies.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Toraldo di Francia, Appl. Opt. 4, 1267 (1965).
    [CrossRef]
  2. P. F. Checacci, A. Consortini, A. M. Scheggi, Appl. Opt. 6, 584 (1967).
    [CrossRef]
  3. G. Zhou, L. W. Casperson, Appl. Opt. 20, 3542 (1981).
    [CrossRef] [PubMed]
  4. D. L. Bobroff, Appl. Opt. 3, 1485 (1964).
    [CrossRef]
  5. D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
    [CrossRef]
  6. L. H. Johnston, Appl. Opt. 16, 1082 (1977).
    [CrossRef] [PubMed]
  7. E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  8. V. Evtuhov, A. E. Siegman, Appl. Opt. 4, 142 (1965).
    [CrossRef]
  9. A. E. Siegman, Opt. Commun. 24, 365 (1978).
    [CrossRef]

1982

D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
[CrossRef]

1981

1978

A. E. Siegman, Opt. Commun. 24, 365 (1978).
[CrossRef]

1977

1967

1965

1964

D. L. Bobroff, Appl. Opt. 3, 1485 (1964).
[CrossRef]

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Bobroff, D. L.

Casperson, L. W.

Checacci, P. F.

Consortini, A.

Evtuhov, V.

Johnson, L. C.

D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
[CrossRef]

Johnston, L. H.

Jones, K.

D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
[CrossRef]

Mansfield, D. K.

D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Scheggi, A. M.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Semet, A.

D. K. Mansfield, K. Jones, A. Semet, L. C. Johnson, Appl. Phys. Lett. 40, 926 (1982).
[CrossRef]

Siegman, A. E.

Toraldo di Francia, G.

Zhou, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rooftop resonator.

Fig. 2
Fig. 2

Comparison of standard Fabry-Perot resonator modes and rooftop resonator modes.

Fig. 3
Fig. 3

Comparison of the electric fields in a standard cavity and a rooftop cavity.

Fig. 4
Fig. 4

Reflection-induced phase changes in the rooftop resonator.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

E x | z = 0 , L = 0 ,
E y z | z = 0 , L = 0.
E ( z , t ) = A sin ( k z ) cos ( ω t ) x ˆ ± B cos ( k z ) cos ( ω t ) y ˆ ,
E ( z 0 , t 0 ) A / 2 x ˆ ± B / 2 y ˆ .
E ( z 0 , t 0 ) = E 0 cos ( Δ ) x ˆ + E 0 sin ( Δ ) y ˆ ,
E ( z , t ) 2 E 0 cos ( ω t ) [ sin ( k z ) x ˆ ± cos ( k z ) y ˆ ] .
E ( x , y , z , t ) = 2 E 0 J 0 ( 2.4 r / a ) cos ( ω t ) [ cos ( Δ ) sin ( k z ) x ˆ ± sin ( Δ ) cos ( k z ) y ˆ ] ,
E x | z = L = J 0 ( 2.4 r / a ) E 0 cos ( Δ ) sin ( k L ) = 0 ,
z E y | z = L = ± J 0 ( 2.4 r / a ) E 0 sin ( Δ ) k sin ( k L ) = 0
cos ( Δ ) sin ( k L ) = 0 ,
± sin ( Δ ) sin ( k L ) = 0.
L ± = n π k , n = 0,1,2,3 ,
E ( x , y , z , t ) | Δ = π / 4 = E 0 J 0 ( 2.4 r / a ) cos ( ω t ) [ sin ( k z ) x ˆ ± cos ( k z ) y ˆ ] .
E ( x , y , z , t ) | Δ = π / 4 = E 0 2 J 0 ( 2.4 r / a ) [ sin ( k z + ω t ) x ˆ ± cos ( k z + ω t ) y ˆ ± sin ( k z ω t ) x ˆ ± cos ( k z ω t ) y ˆ ] .
( E · υ ˆ ) | z = L = 0 ,
z ( E · u ˆ ) | z = L = 0
υ ˆ = sin ( θ ) y ˆ + cos ( θ ) x ˆ ,
u ˆ = cos ( θ ) y ˆ + sin ( θ ) x ˆ .
cos ( ω t ) [ cos ( Δ ) sin ( k L ) cos ( θ ) ± sin ( Δ ) cos ( k L ) sin ( θ ) ] = 0.
cos ( ω t ) k [ cos ( Δ ) cos ( k L ) sin ( θ ) ± sin ( Δ ) sin ( k L ) cos ( θ ) ] = 0.
tan ( k L ) = ± tan ( Δ ) tan ( θ ) ,
tan ( k L ) = ± cot ( Δ ) tan ( θ ) ,
tan ( Δ ) = cot ( Δ ) ,
Δ = π / 4 .
tan ( k L ) = ± tan ( θ )
k L = n π ± θ , n = 0,1,2 .
L ± = n π ± θ k , n = 0,1,2 ,
ν n = n c 2 L ± θ 2 π c L , n = 0,1,2,3 .

Metrics