Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kraushaar, J. Opt. Soc. Am. 40, 480 (1950); M. Françon, J. Opt. Soc. Am. 47, 528 (1957).
    [CrossRef]
  2. A. J. Durelli, V. J. Parks, Moire Analysis of Strain (Prentice-Hall, Englewood Cliffs, N.J., 1970).
  3. Y. Yoshino, M. Tsukiji, H. Takasaki, Appl. Opt. 15, 2414 (1976).
    [CrossRef] [PubMed]
  4. Y. Y. Hung, J. L. Turner, M. Tafralian, J. D. Hovanesian, C. E. Taylor, Appl. Opt. 17, 128 (1978).
    [CrossRef] [PubMed]
  5. O. Kafri, Opt. Lett. 5, 555 (1980).
    [CrossRef] [PubMed]
  6. O. Kafri, A. Livnat, Appl. Opt. 20, 3098 (1981).
    [CrossRef] [PubMed]
  7. O. Kafri, E. Margalit, Appl. Opt. 20, 2344 (1981).
    [CrossRef] [PubMed]

1981

1980

1978

1976

1950

Durelli, A. J.

A. J. Durelli, V. J. Parks, Moire Analysis of Strain (Prentice-Hall, Englewood Cliffs, N.J., 1970).

Hovanesian, J. D.

Hung, Y. Y.

Kafri, O.

Kraushaar, R.

Livnat, A.

Margalit, E.

Parks, V. J.

A. J. Durelli, V. J. Parks, Moire Analysis of Strain (Prentice-Hall, Englewood Cliffs, N.J., 1970).

Tafralian, M.

Takasaki, H.

Taylor, C. E.

Tsukiji, M.

Turner, J. L.

Yoshino, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

When two identical distorted gratings are shifted fringes of equiderivatives are formed.

Fig. 2
Fig. 2

Creation of the grating hologram. A grating G is projected on a diffusive surface. To an observer at an angle α the deviation of the groove is proportional to the surface height at this location.

Fig. 3
Fig. 3

Slope contour map of a sphere. Note the change in the pitch along the sphere.

Fig. 4
Fig. 4

Curvature contour map of a mirror. Each fringe represents the loci of equal second height derivatives.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( x , y ) = 1 2 + 2 π m = 1 sin ( 2 m + 1 ) 2 π P [ y + f ( x , y ) ] 2 m + 1
g 2 ( x , y ) = 1 2 + 2 π m = 1 sin ( 2 m + 1 ) 2 π P [ y + δ y + f ( x + δ x , y + δ y ) ] 2 m + 1 .
1 4 + 2 π 2 m = 1 cos ( 2 m + 1 ) 2 π P [ δ y + f ( x + δ x , y + δ y ) f ( x , y ) ] ( 2 m + 1 ) 2 .
f r = f ( x + δ x , y + δ y ) f ( x , y ) ( δ x 2 + δ y 2 ) 1 / 2 .
f x = 1 tan α ( h x ) ,
( h x ) incr = ± p tan α δ x .
b = φ Δ / θ .
b x = Δ θ φ x = 2 Δ θ 2 h x 2 ,
( 2 h x 2 ) incr = p 2 Δ δ x .
( f x ) incr = p δ x .
f x = 2 Δ 2 h x 2 ,
( 2 h x 2 ) incr = p 2 Δ δ x ,

Metrics