Abstract

The association of a four-media stratified illumination device and a high N.A. objective allowed us to obtain nonresonant Raman spectra of ultrathin films. The signal-to-noise ratio provided by this combination was computed. From this ratio we derived the optimization of the illumination conditions and optical coupling of the objective with the sample and with the spectrometer.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Takenaka, T. Nakanaga, J. Phys. Chem. 80, 175 (1976).
    [CrossRef]
  2. R. H. Felton, N.-T. Wu, in The Porphyrins, Vol. 3, D. Dolphin, Ed. (Academic, New York, 1978).
  3. P. R. Carey, Q. Rev. Biophys. 11, 309 (1978).
    [CrossRef] [PubMed]
  4. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [CrossRef]
  5. Y. Levy, Nouv. Rev. Opt. Appl. 3, 25 (1972).
    [CrossRef]
  6. M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
    [CrossRef]
  7. M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
    [CrossRef]
  8. A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
    [CrossRef]
  9. A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
    [CrossRef] [PubMed]
  10. M. Delhaye, J. Dhamelincourt, Raman Spectrosc. 3, 33 (1975).
    [CrossRef]
  11. G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
    [CrossRef]

1980 (2)

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
[CrossRef]

1979 (1)

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

1978 (1)

P. R. Carey, Q. Rev. Biophys. 11, 309 (1978).
[CrossRef] [PubMed]

1977 (1)

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

1976 (1)

T. Takenaka, T. Nakanaga, J. Phys. Chem. 80, 175 (1976).
[CrossRef]

1975 (1)

M. Delhaye, J. Dhamelincourt, Raman Spectrosc. 3, 33 (1975).
[CrossRef]

1972 (1)

Y. Levy, Nouv. Rev. Opt. Appl. 3, 25 (1972).
[CrossRef]

1970 (2)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
[CrossRef]

Aurengo, A.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

Barbillat, J.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

Carey, P. R.

P. R. Carey, Q. Rev. Biophys. 11, 309 (1978).
[CrossRef] [PubMed]

Connell, G. A. N.

G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
[CrossRef]

Dakss, M. L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Delhaye, M.

M. Delhaye, J. Dhamelincourt, Raman Spectrosc. 3, 33 (1975).
[CrossRef]

Dhamelincourt, J.

M. Delhaye, J. Dhamelincourt, Raman Spectrosc. 3, 33 (1975).
[CrossRef]

Dupeyrat, R.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

Felton, R. H.

R. H. Felton, N.-T. Wu, in The Porphyrins, Vol. 3, D. Dolphin, Ed. (Academic, New York, 1978).

Girlando, A.

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

Hasmonay, H.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

Heidrich, P. F.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Heitmann, D.

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

Imbert, C.

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

Kuhn, L.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Levy, Y.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

Y. Levy, Nouv. Rev. Opt. Appl. 3, 25 (1972).
[CrossRef]

Masson, M.

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

Menetrier, M.

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

Nakanaga, T.

T. Takenaka, T. Nakanaga, J. Phys. Chem. 80, 175 (1976).
[CrossRef]

Nemanich, R. J.

G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
[CrossRef]

Philpott, M. R.

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

Santo, R.

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

Scott, B. A.

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

Swalen, J. D.

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

Takenaka, T.

T. Takenaka, T. Nakanaga, J. Phys. Chem. 80, 175 (1976).
[CrossRef]

Tien, P. K.

Tsai, C. C.

G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
[CrossRef]

Ulrich, R.

Wu, N.-T.

R. H. Felton, N.-T. Wu, in The Porphyrins, Vol. 3, D. Dolphin, Ed. (Academic, New York, 1978).

Appl. Phys. Lett. (2)

M. L. Dakss, L. Kuhn, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 16, 523 (1970).
[CrossRef]

G. A. N. Connell, R. J. Nemanich, C. C. Tsai, Appl. Phys. Lett. 36, 31 (1980).
[CrossRef]

Biochem. Biophys. Res. Commun. (1)

A. Aurengo, M. Masson, R. Dupeyrat, Y. Levy, H. Hasmonay, J. Barbillat, Biochem. Biophys. Res. Commun. 89, 559 (1979).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

A. Girlando, M. R. Philpott, D. Heitmann, J. D. Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

T. Takenaka, T. Nakanaga, J. Phys. Chem. 80, 175 (1976).
[CrossRef]

Nouv. Rev. Opt. Appl. (1)

Y. Levy, Nouv. Rev. Opt. Appl. 3, 25 (1972).
[CrossRef]

Opt. Commun. (1)

M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Opt. Commun. 21, 162 (1977).
[CrossRef]

Q. Rev. Biophys. (1)

P. R. Carey, Q. Rev. Biophys. 11, 309 (1978).
[CrossRef] [PubMed]

Raman Spectrosc. (1)

M. Delhaye, J. Dhamelincourt, Raman Spectrosc. 3, 33 (1975).
[CrossRef]

Other (1)

R. H. Felton, N.-T. Wu, in The Porphyrins, Vol. 3, D. Dolphin, Ed. (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Four-media stratified device.

Fig. 2
Fig. 2

Complete device.

Fig. 3
Fig. 3

Coupling angles vs d3 for TM and TE polarizations.

Fig. 4
Fig. 4

Variations of S3(ρ3,θ4).

Fig. 5
Fig. 5

Variations of S1(ρ1,θ4).

Fig. 6
Fig. 6

Variations of K(ap,aw).

Fig. 7
Fig. 7

Calculation of the useful flux Φ3.

Fig. 8
Fig. 8

Calculation of the main superfluous flux Φ1.

Tables (2)

Tables Icon

Table I Characteristics of Objectives

Tables Icon

Table II Optimization Criterion for Three Immersion Objectives

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

4 Π λ d 3 ( n 3 2 n 1 2 sin 2 ψ k ) 1 / 2 χ 31 χ 34 = 2 k π ,
C 0 = Φ 3 Φ T = Φ 3 [ Φ 1 + ( p + 1 ) Φ 3 ] 1 / 2 .
C = Φ 3 Φ 1 ,
x = ± a p = ± a s G m G 1 , y = ± b p = ± b s G m G 1 .
C = H { R p R p exp [ 2 ( y b w ) 2 ] d y } 1 / 2 ,
Φ 3 = K 3 E 0 2 2 R p S 3 ( ρ 3 , θ 4 ) 2 a w cos ψ 0 t 0 exp ( t 2 2 ) d t ,
a w cos ψ 0 t 0 exp ( t 2 2 ) d t ,
Φ 1 = K 1 E 0 2 t 0 a w 2 cos 2 ψ R p S 1 ( ρ 1 , θ 4 ) 2 π .
t 0 a w 2 cos 2 ψ
C = Z E 0 K 3 K 1 [ 1 t 0 0 t 0 exp ( t 2 2 ) d t ] [ R p S 3 S 1 ] ,
1 t 0 0 t 0 exp ( t 2 2 ) d t = K ( a p , a w ) ,
R p S 3 S 1 = J ( R p , ρ 1 , ρ 3 , θ 4 ) ,
K ( a p , a w ) = 1 t 0 0 t 0 exp ( t 2 2 ) d t ,
a w = a p cos ψ 1.40 .
L ( ρ 1 , ρ 3 , θ 4 ) = S 3 ( ρ 3 , θ 4 ) S 1 ( ρ 1 , θ 4 ) .
θ 4 = sin ( G m G 1 O s n 4 ) < θ 0 ,
a w = a s cos ψ G m G 1 × 1.40 ;
G 1 = G 0 = O m G m O s ; a p = a s G m G 1 = a s O s O m ; a w = a p cos ψ 1.40 ;
a s = 100 μ m ( resolution = 4 cm 1 ) , b s = 10 mm .
a g = 55 mm , d g = 1 m , θ g = 30 ° .
O s = sin [ arctan ( a g cos θ g d g ) ] = 48 × 10 3 .
E ( a , b , c ) = E 0 exp [ ( a cos ψ + c sin ψ a w ) 2 ( b b w ) 2 ] .
Φ 1 = Ω 1 E 2 ( a , b , c ) Δ ( a , c ) d V .
Φ 1 = R p R p exp ( 2 ( b b w ) 2 ) d b a , c E 1 2 ( a , c ) Δ ( a , c ) d a d c ,
E 1 ( a , c ) = E 0 exp [ ( a cos ψ + c sin ψ a w ) 2 ] .
Φ 3 = R p R p exp ( 2 ( b b w ) 2 ) d b a p a p γ E 1 2 ( a , o ) Γ ( a ) d a ,
C = [ R p R p exp ( 2 ( b b w ) 2 ) d b ] 1 / 2 [ a p a p γ E i 2 ( a , o ) Γ ( a ) d a ( a , c E 1 2 ( a , c ) Δ ( a , c ) d a d c ) 1 / 2 ] .
C = H [ R p R p exp ( 2 ( b b w ) 2 ) d b ] 1 / 2 .
ρ i = 3 β i 2 45 α i 2 + 4 β i 2
K = 2 π 3 ( ν ν 0 ) 4 45 c 3 ,
d η 3 ( a , b ) d S = K N 3 d 3 γ E 2 ( a , o ) ( 6 β 3 2 cos 2 θ + ( 45 α 3 2 + 7 β 3 2 ) sin 2 θ ) d Ω d S = K 3 E 2 ( a , o ) ( 1 + ρ 3 ( 1 ρ 3 ) cos 2 θ ) d Ω d S ,
η 3 = θ = 0 θ 4 ϕ = 0 2 π d η 3 ,
S 3 ( ρ 3 , θ 4 ) = 2 π ( 1 + ρ 3 ) ( 1 cos θ 4 ) + ρ 3 1 3 ( 1 cos 3 θ 4 ) .
Φ 3 = b = R p R p a = a p a p η 3 d S ;
Φ 3 = K 3 E 0 2 2 R p S 3 ( ρ 3 , θ 4 ) a p a p exp ( 2 a 2 cos 2 ψ a w 2 ) d a .
Φ 3 = K 3 E 0 2 2 R p S 3 ( ρ 3 , θ 4 ) 2 a w cos ψ 0 t 0 exp ( 2 t 2 ) d t .
θ 1 = arcsin n 4 sin θ 4 n 1 .
E u = E ( r , t ) ( sin θ sin ψ cos ϕ cos θ cos ψ ) , E υ = E ( r , t ) cos ψ sin ϕ , E w = E ( r , t ) ( cos ϕ cos ψ sin θ + sin ψ cos θ ) .
d η 1 ( TE ) = K N 1 ( 3 β 1 2 E u 2 + ( 45 α 1 2 + 4 β 1 2 ) E υ 2 + 3 β 1 2 E w 2 ) d V d Ω , d η 1 ( TM ) = K N 1 ( ( 45 α 1 2 + 4 β 1 2 ) E u 2 + 3 β 1 2 E υ 2 + 3 β 1 2 E w 2 ) d V d Ω .
d η 1 = K 1 ( ρ 1 ( T TM + T TE ) E 2 ( r , t ) + ( 1 ρ 1 ) ( E u 2 T TM + E υ 2 T TE ) ) d V d Ω ,
η 1 ( a , b ) = Ω 1 d η 1 = K 1 θ = 0 θ 1 sin θ cos θ d θ × ϕ = 0 2 Π H ( θ , ϕ ) d ϕ ρ = 0 E 2 ( r , t ) d ρ ,
H ( θ , ϕ ) = ρ 1 ( T TM ( θ ) + T TE ( θ ) ) + ( 1 ρ 1 ) [ ( sin θ sin ψ cos ϕ cos θ cos ψ ) 2 T TM ( θ ) + ( cos ψ sin ϕ ) 2 T TE ( θ ) ] .
ρ = 0 E 2 ( r , t ) d ρ = E 0 2 a w 2 ( sin θ cos ϕ cos ψ + cos θ sin ψ ) × 2 a cos ψ a w exp ( u 2 2 ) d u .
G ( h ) = h exp ( u 2 / 2 ) d u ,
η 1 ( a , b ) = K 1 E 0 2 a w 2 G ( 2 t ) × θ = 0 θ 1 d θ ϕ = 0 2 π H ( θ , ϕ ) sin θ cos θ sin θ cos ϕ cos ψ + cos θ sin ψ d θ .
S 1 ( ρ 1 , θ 4 ) = θ = 0 θ 1 ( θ 4 ) d θ ϕ = 0 2 π H ( θ , ϕ ) sin θ cos θ cos ψ sin θ cos ϕ cos ψ + cos θ sin ψ d θ .
Φ 1 = a = a w a w d a b = R p R p η 1 ( a , b ) d b , Φ 1 = K 1 E 0 2 a w cos ψ R p S 1 ( ρ 1 , θ 4 ) a p a p G ( 2 t ) d a .
a p a p G ( 2 t ) d a = a w cos ψ t 0 2 π .
Φ 1 = K 1 E 0 2 t 0 a w 2 cos 2 ψ 2 π R p S 1 ( ρ 1 , θ 4 ) .

Metrics