Abstract

A generalized reflectance method for determination of optical properties of absorbing materials is developed and compared with other reflectance methods. In the present scheme the specimen is coated with dielectric transparent layer(s) and the reflectance ratios are measured. This novel scheme of specimen preparation and the method of measurement allow the specimen to be free from surface layers and at the same time account for possible effects of surface roughness. It can be applied to a wide variety of materials regardless of their surface conditions and is particularly useful for metals.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rouard, P. Bosquet, in Prog. in Optics, Vol. 4, E. Wolf, Ed. (North Holland, Holland, 1965), p. 145.
    [CrossRef]
  2. F. Abeles, in Physics of Thin Films, Vol. 6, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1971), p. 151.
  3. P. Rouard, A. Meessen, in Prog. in Optics, Vol. 15, E. Wolf, Ed. (North Holland, Holland, 1977), p. 79.
  4. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p. 45.
  5. C. L. Nagendra, G. K. M. Thutupalli, Appl. Opt. 20, 2747 (1981).
    [CrossRef] [PubMed]
  6. C. L. Nagendra, G. K. M. Thutupalli, J. Phys. D. 15, 1153 (1982).
    [CrossRef]
  7. S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
    [CrossRef]
  8. S. P. F. Humphreys-Owen, Proc. Phys. Soc. B 77, 949 (1961).
    [CrossRef]
  9. J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
    [CrossRef]
  10. S. G. Tomlin, Thin Solid Films 13, 265 (1972).
    [CrossRef]

1982 (1)

C. L. Nagendra, G. K. M. Thutupalli, J. Phys. D. 15, 1153 (1982).
[CrossRef]

1981 (1)

1976 (2)

S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
[CrossRef]

J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
[CrossRef]

1972 (1)

S. G. Tomlin, Thin Solid Films 13, 265 (1972).
[CrossRef]

1961 (1)

S. P. F. Humphreys-Owen, Proc. Phys. Soc. B 77, 949 (1961).
[CrossRef]

Abeles, F.

F. Abeles, in Physics of Thin Films, Vol. 6, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1971), p. 151.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p. 45.

Bosquet, P.

P. Rouard, P. Bosquet, in Prog. in Optics, Vol. 4, E. Wolf, Ed. (North Holland, Holland, 1965), p. 145.
[CrossRef]

Humphreys-Owen, S. P. F.

S. P. F. Humphreys-Owen, Proc. Phys. Soc. B 77, 949 (1961).
[CrossRef]

Khawaja, E.

S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
[CrossRef]

Meessen, A.

P. Rouard, A. Meessen, in Prog. in Optics, Vol. 15, E. Wolf, Ed. (North Holland, Holland, 1977), p. 79.

Nagendra, C. L.

C. L. Nagendra, G. K. M. Thutupalli, J. Phys. D. 15, 1153 (1982).
[CrossRef]

C. L. Nagendra, G. K. M. Thutupalli, Appl. Opt. 20, 2747 (1981).
[CrossRef] [PubMed]

Pinnan-Lucarre, J. P.

J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
[CrossRef]

Rouard, P.

P. Rouard, A. Meessen, in Prog. in Optics, Vol. 15, E. Wolf, Ed. (North Holland, Holland, 1977), p. 79.

P. Rouard, P. Bosquet, in Prog. in Optics, Vol. 4, E. Wolf, Ed. (North Holland, Holland, 1965), p. 145.
[CrossRef]

Tai, N. T.

J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
[CrossRef]

Thutupalli, G. K. M.

C. L. Nagendra, G. K. M. Thutupalli, J. Phys. D. 15, 1153 (1982).
[CrossRef]

C. L. Nagendra, G. K. M. Thutupalli, Appl. Opt. 20, 2747 (1981).
[CrossRef] [PubMed]

S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
[CrossRef]

Tomlin, S. G.

S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
[CrossRef]

S. G. Tomlin, Thin Solid Films 13, 265 (1972).
[CrossRef]

Vincent-Geisse, J.

J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p. 45.

Appl. Opt. (1)

J. Phys. C (1)

S. G. Tomlin, E. Khawaja, G. K. M. Thutupalli, J. Phys. C 9, 4335 (1976).
[CrossRef]

J. Phys. D. (1)

C. L. Nagendra, G. K. M. Thutupalli, J. Phys. D. 15, 1153 (1982).
[CrossRef]

Journal de Physique (1)

J. Vincent-Geisse, N. T. Tai, J. P. Pinnan-Lucarre, Journal de Physique 28, 26 (1976).
[CrossRef]

Proc. Phys. Soc. B (1)

S. P. F. Humphreys-Owen, Proc. Phys. Soc. B 77, 949 (1961).
[CrossRef]

Thin Solid Films (1)

S. G. Tomlin, Thin Solid Films 13, 265 (1972).
[CrossRef]

Other (4)

P. Rouard, P. Bosquet, in Prog. in Optics, Vol. 4, E. Wolf, Ed. (North Holland, Holland, 1965), p. 145.
[CrossRef]

F. Abeles, in Physics of Thin Films, Vol. 6, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1971), p. 151.

P. Rouard, A. Meessen, in Prog. in Optics, Vol. 15, E. Wolf, Ed. (North Holland, Holland, 1977), p. 79.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p. 45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of specimen configuration.

Fig. 2
Fig. 2

Reflectance curves for hypothetical system.

Fig. 3
Fig. 3

(a and b) Nature of dispersion curve for different thickness combinations.

Fig. 4
Fig. 4

Refractive index and absorption index together with probable inaccuracies for the hypothetical system.

Tables (1)

Tables Icon

Table I Comparison of Different Reflectance Methods

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R d R s 1 = [ ( X 1 + Y ) ( X d Y ) ] / [ ( X 1 Y ) ( X d + Y ) ] ,
R d R s 2 = [ ( X 2 + Y ) ( X d Y ) ] / [ ( X 2 Y ) ( X d + Y ) ] .
n = 6.0 ( 3.0 × 10 5 / λ 2 ) ,
k = 0.063 + ( 2.53 × 10 5 / λ 2 ) ,
X 1 = ( n 0 2 + n 1 2 ) ( n 1 2 + n 2 + k 2 ) + ( n 0 2 n 1 2 ) [ ( n 1 2 n 2 k 2 ) × cos 2 y 1 + 2 n 1 k sin 2 y 1 ] Y = 4 n 0 n 1 2 n X 2 = ( n 0 2 + n 1 2 ) ( n 1 2 + n 2 + k 2 ) + ( n 0 2 n 1 2 ) [ ( n 1 2 n 2 k 2 ) × cos 2 y 2 + 2 n 1 k sin 2 y 2 ] X D = ( n 0 2 + n 1 2 ) ( n 1 2 + n 2 + k 2 ) + ( n 0 2 n 1 2 ) [ ( n 1 2 n 2 k 2 ) cos 2 y 3 + 2 n 2 k sin 2 y 3 ] y 1 = 2 π n 1 d 1 / λ y 2 = 2 π n 1 d 2 / λ , y 3 = 2 π n 1 d 3 / λ .

Metrics