Abstract

The influence of self-absorption in a 4-dicyano-methylene-2-methyl-6-p-dimethyl amino-styrl-4H-pyran (DCM) doped polymethylmethacrylate (PMMA) optical waveguide on the light transport efficiency has been evaluated. A Monte Carlo technique was used to simulate intermolecular energy transfer and calculate the energy emission profile of an active waveguide. The calculated and measured edge emission profiles were found to be in excellent agreement. The edge emission spectra for various distances of excitation from the edge were used to estimate the DCM self-absorption cross section.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 18, 3090 (1979).
    [CrossRef] [PubMed]
  2. R. W. Olson, R. F. Loring, M. D. Fayer, Appl. Opt. 20, 2934 (1981).
    [CrossRef] [PubMed]
  3. J. S. Batchelder, A. H. Zewail, T. Cole, Appl. Opt. 20, 3733 (1981).
    [CrossRef] [PubMed]
  4. W. H. Weber, J. Lambe, Appl. Opt. 15, 2299 (1976).
    [CrossRef] [PubMed]
  5. W. Geotzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
    [CrossRef]
  6. J. M. Drake, M. L. Lesiecki, J. Sansregret, W. R. L. Thomas, Appl. Opt. 21, 2945 (1982).
    [CrossRef] [PubMed]

1982

1981

1979

1977

W. Geotzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

1976

Batchelder, J. S.

Cole, T.

Drake, J. M.

Fayer, M. D.

Geotzberger, W.

W. Geotzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

Greubel, W.

W. Geotzberger, W. Greubel, Appl. Phys. 14, 123 (1977).
[CrossRef]

Lambe, J.

Lesiecki, M. L.

Loring, R. F.

Olson, R. W.

Sansregret, J.

Thomas, W. R. L.

Weber, W. H.

Zewail, A. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption and fluorescence spectra of DCM in PMMA at 1.75 × 10−4 M.

Fig. 2
Fig. 2

Apparatus for measuring edge emission spectra of optically active waveguide strips.

Fig. 3
Fig. 3

Schematic of transport experiment.

Fig. 4
Fig. 4

Corrected edge emission spectra of DCM in PMMA for excitation distances from 1.0 to 25 cm. Spectra show the attenuation of fluorescence emission due to both self-absorption ηself and matrix transport ηtrans losses.

Fig. 5
Fig. 5

Self-absorption cross section of DCM in PMMA comparing data obtained from Cary 17 ▲ and edge emission profiles Δ.

Fig. 6
Fig. 6

Emission profiles for varying excitation distances from the edge are presented. The calculated and experimental profiles are compared for each excitation distance: ■, FSE; ○, 1 cm; ●, 5 cm; □, 10 cm; and Δ, 25 cm.

Fig. 7
Fig. 7

Experimental ○ and calculated □ values of P0 for DCM in PMMA are compared for varying transport distances L.

Fig. 8
Fig. 8

Transport losses for 1.75 × 10−4-M DCM in PMMA are evaluated from the normalized edge emission profiles (see Fig. 6).

Fig. 9
Fig. 9

Apparent optical path B is compared to experimental excitation distances of 1 cm (○) and 10 cm (●) for DCM using Eq. (3).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P 0 = P ( ν ) E ( ν ) d ν E ( ν ) d ν .
η self = P 0 1 ( 1 P 0 ) η   qua · η trap ,
α ( ν ) = 1 L C ln I ( ν , L ) I ( ν , 0 ) ,
A ( ν ) = A max exp { [ ( ν v max a ) / a 1 / e ] 2 } ,
E ( ν ) = E max exp { [ ( ν v max f ) / f 1 / e ] 2 } ,
ν max a = 21,701 cm 1 , a 1 / e = 1830 cm 1 , ν max f = 17,655 cm 1 , f 1 / e = 1050 cm 1 ,
L 1 = 1 α ( ν ) ln ( P ) ,
x = x 0 + L 1 cos θ ,
y = y 0 + L 1 cos θ .
0.015 I EEE ( ν ) I FSE ( ν ) 0.15 ,

Metrics