Abstract

An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The multipurpose DIAL system can operate from 280 to 1064 nm for measurements of ozone, sulfur dioxide, nitrogen dioxide, water vapor, temperature, pressure, and aerosol backscattering. The laser transmitter consists of two narrow linewidth Nd:YAG pumped dye lasers with automatic wavelength control. The DIAL wavelengths are transmitted with a 100-μsec temporal separation to reduce receiver system complexity. A coaxial receiver system is used to collect and optically separate the DIAL and aerosol lidar returns. Photomultiplier tubes detect the back-scattered laser returns after optical filtering, and the analog signals from three tubes are digitized and stored on high-speed magnetic tape. Real-time gas concentration profiles or aerosol backscatter distributions are calculated and displayed for experiment control. Operational parameters for the airborne DIAL system are presented for measurements of ozone, water vapor, and aerosols in the 290-, 720-, and 600-nm wavelength regions, respectively. The first ozone profile measurements from an aircraft using the DIAL technique are discussed in this paper. Comparisons between DIAL and in situ ozone measurements show agreement to within ±5 ppbv in the lower troposphere. Lidar aerosol data obtained simultaneously with DIAL ozone measurements are presented for a flight over Virginia and the Chesapeake Bay. DIAL system performance for profiling ozone in a tropopause folding experiment is evaluated, and the applications of the DIAL system to regional and global-scale tropospheric investigations are discussed.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, Appl. Opt. 18, 3474 (1979).
    [CrossRef] [PubMed]
  2. E. V. Browell, Opt. Eng. 21, 128 (1982).
    [CrossRef]
  3. E. V. Browell, Ed., “Shuttle Atmospheric Lidar Research Program-Final Report of Atmospheric Lidar Working Group,” NASA Spec. Publ. 433 (1979).
  4. R. V. Greco, Ed., “Atmospheric Lidar Multi-User Instrument System Definition Study,” NASA Contract. Rep. 3303 (1980).
  5. J. E. Harris, E. V. Browell, “Evolutionary Shuttle Atmospheric Lidar Program,” in Conference Abstracts, Ninth International Laser Radar Conference, Munich, Germany, 2–5 July 1979.
  6. E. V. Browell, S. T. Shipley, “Lidar Meteorology,” in Proceedings, International Geoscience and Remote Sensing Symposium, Washington, D.C., 8–10 June 1981.
  7. S. T. Shipley, E. V. Browell, “Airborne Lidar Measurements of Mixed Layer Dynamics,” in Conference Abstracts, Eleventh International Laser Radar Conference, Madison, Wisc., 23–25 June 1982.
  8. R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceedings, Third Symposium on Remote Sensing of the Environment, Oct. 1964 (U. Michigan, Ann Arbor, 1965).
  9. R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).
  10. R. L. Byer, M. Garbuny, Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  11. R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  12. R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).
  13. F. Bos, Appl. Opt. 20, 1886 (1981).
    [CrossRef] [PubMed]
  14. C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
    [CrossRef]
  15. C. F. Butler, S. T. Shipley, R. J. Allen, “Investigation of Potential of Differential Absorption Lidar Techniques for Remote Sensing of Atmospheric Pollutants,” Old Dominion U., Norfolk, Va., Tech. Rep. GSTR-81-8 (1981).
  16. E. C. Y. Inn, Y. Tanaka, “Ozone Absorption Coefficients in the Visible and Ultraviolet Regions,” in Advances in Chemistry, No. 21 (American Chemical Society, Washington, D.C., 1959), p. 263.
    [CrossRef]
  17. G. L. Gregory, S. M. Beck, J. J. Mathis, “In Situ Correlative Measurement for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air Quality Remote Sensors: 1980 PEPE/NEROS Program,” NASA Tech. Memo. 83107 (1981).
  18. T. E. Graedel, “Urban Precursors and Their Photochemical Products,” in Man’s Impact on the Troposphere, J. S. Levine, D. R. Schryer, Eds., NASA Ref. Publ. 1022 (1978).
  19. E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).
  20. National Center for Atmospheric Research, Annual Report, Fiscal Year 1978, Boulder, Colo.
  21. E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.
  22. A. Rosenberg, D. B. Hogan, Appl. Opt. 20, 3286 (1981).
    [CrossRef] [PubMed]

1982 (1)

E. V. Browell, Opt. Eng. 21, 128 (1982).
[CrossRef]

1981 (4)

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).

F. Bos, Appl. Opt. 20, 1886 (1981).
[CrossRef] [PubMed]

A. Rosenberg, D. B. Hogan, Appl. Opt. 20, 3286 (1981).
[CrossRef] [PubMed]

1979 (1)

1974 (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1973 (1)

1972 (1)

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Allen, R. J.

C. F. Butler, S. T. Shipley, R. J. Allen, “Investigation of Potential of Differential Absorption Lidar Techniques for Remote Sensing of Atmospheric Pollutants,” Old Dominion U., Norfolk, Va., Tech. Rep. GSTR-81-8 (1981).

Beck, S. M.

G. L. Gregory, S. M. Beck, J. J. Mathis, “In Situ Correlative Measurement for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air Quality Remote Sensors: 1980 PEPE/NEROS Program,” NASA Tech. Memo. 83107 (1981).

Bos, F.

Browell, E. V.

E. V. Browell, Opt. Eng. 21, 128 (1982).
[CrossRef]

E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

J. E. Harris, E. V. Browell, “Evolutionary Shuttle Atmospheric Lidar Program,” in Conference Abstracts, Ninth International Laser Radar Conference, Munich, Germany, 2–5 July 1979.

E. V. Browell, S. T. Shipley, “Lidar Meteorology,” in Proceedings, International Geoscience and Remote Sensing Symposium, Washington, D.C., 8–10 June 1981.

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

S. T. Shipley, E. V. Browell, “Airborne Lidar Measurements of Mixed Layer Dynamics,” in Conference Abstracts, Eleventh International Laser Radar Conference, Madison, Wisc., 23–25 June 1982.

Butler, C. F.

C. F. Butler, S. T. Shipley, R. J. Allen, “Investigation of Potential of Differential Absorption Lidar Techniques for Remote Sensing of Atmospheric Pollutants,” Old Dominion U., Norfolk, Va., Tech. Rep. GSTR-81-8 (1981).

Byer, R. L.

Cahen, C.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Carter, A. F.

E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).

Garbuny, M.

Gildwarg, P.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Graedel, T. E.

T. E. Graedel, “Urban Precursors and Their Photochemical Products,” in Man’s Impact on the Troposphere, J. S. Levine, D. R. Schryer, Eds., NASA Ref. Publ. 1022 (1978).

Gregory, G. L.

G. L. Gregory, S. M. Beck, J. J. Mathis, “In Situ Correlative Measurement for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air Quality Remote Sensors: 1980 PEPE/NEROS Program,” NASA Tech. Memo. 83107 (1981).

Harris, J. E.

J. E. Harris, E. V. Browell, “Evolutionary Shuttle Atmospheric Lidar Program,” in Conference Abstracts, Ninth International Laser Radar Conference, Munich, Germany, 2–5 July 1979.

Hogan, D.

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

Hogan, D. B.

Inn, E. C. Y.

E. C. Y. Inn, Y. Tanaka, “Ozone Absorption Coefficients in the Visible and Ultraviolet Regions,” in Advances in Chemistry, No. 21 (American Chemical Society, Washington, D.C., 1959), p. 263.
[CrossRef]

Jegou, J. P.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Mathis, J. J.

G. L. Gregory, S. M. Beck, J. J. Mathis, “In Situ Correlative Measurement for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air Quality Remote Sensors: 1980 PEPE/NEROS Program,” NASA Tech. Memo. 83107 (1981).

McIlrath, T. J.

Measures, R. M.

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Pelon, J.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Pilon, G.

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Porteneuve, J.

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Rosenberg, A.

A. Rosenberg, D. B. Hogan, Appl. Opt. 20, 3286 (1981).
[CrossRef] [PubMed]

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

Schotland, R. M.

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceedings, Third Symposium on Remote Sensing of the Environment, Oct. 1964 (U. Michigan, Ann Arbor, 1965).

Shipley, S. T.

S. T. Shipley, E. V. Browell, “Airborne Lidar Measurements of Mixed Layer Dynamics,” in Conference Abstracts, Eleventh International Laser Radar Conference, Madison, Wisc., 23–25 June 1982.

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

C. F. Butler, S. T. Shipley, R. J. Allen, “Investigation of Potential of Differential Absorption Lidar Techniques for Remote Sensing of Atmospheric Pollutants,” Old Dominion U., Norfolk, Va., Tech. Rep. GSTR-81-8 (1981).

E. V. Browell, S. T. Shipley, “Lidar Meteorology,” in Proceedings, International Geoscience and Remote Sensing Symposium, Washington, D.C., 8–10 June 1981.

Tanaka, Y.

E. C. Y. Inn, Y. Tanaka, “Ozone Absorption Coefficients in the Visible and Ultraviolet Regions,” in Advances in Chemistry, No. 21 (American Chemical Society, Washington, D.C., 1959), p. 263.
[CrossRef]

Thompson, R. T.

R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).

Wilkerson, T. D.

E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

Appl. Opt. (4)

J. Appl. Meteorol. (1)

R. M. Schotland, J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Opt. Eng. (2)

E. V. Browell, A. F. Carter, T. D. Wilkerson, Opt. Eng. 20, 684 (1981).

E. V. Browell, Opt. Eng. 21, 128 (1982).
[CrossRef]

Optoelectronics (1)

R. M. Measures, G. Pilon, Optoelectronics 4, 141 (1972).

Rev. Phys. Appl. (1)

C. Cahen, J. P. Jegou, J. Pelon, P. Gildwarg, J. Porteneuve, Rev. Phys. Appl. 16, 353 (1981).
[CrossRef]

Other (13)

C. F. Butler, S. T. Shipley, R. J. Allen, “Investigation of Potential of Differential Absorption Lidar Techniques for Remote Sensing of Atmospheric Pollutants,” Old Dominion U., Norfolk, Va., Tech. Rep. GSTR-81-8 (1981).

E. C. Y. Inn, Y. Tanaka, “Ozone Absorption Coefficients in the Visible and Ultraviolet Regions,” in Advances in Chemistry, No. 21 (American Chemical Society, Washington, D.C., 1959), p. 263.
[CrossRef]

G. L. Gregory, S. M. Beck, J. J. Mathis, “In Situ Correlative Measurement for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air Quality Remote Sensors: 1980 PEPE/NEROS Program,” NASA Tech. Memo. 83107 (1981).

T. E. Graedel, “Urban Precursors and Their Photochemical Products,” in Man’s Impact on the Troposphere, J. S. Levine, D. R. Schryer, Eds., NASA Ref. Publ. 1022 (1978).

E. V. Browell, Ed., “Shuttle Atmospheric Lidar Research Program-Final Report of Atmospheric Lidar Working Group,” NASA Spec. Publ. 433 (1979).

R. V. Greco, Ed., “Atmospheric Lidar Multi-User Instrument System Definition Study,” NASA Contract. Rep. 3303 (1980).

J. E. Harris, E. V. Browell, “Evolutionary Shuttle Atmospheric Lidar Program,” in Conference Abstracts, Ninth International Laser Radar Conference, Munich, Germany, 2–5 July 1979.

E. V. Browell, S. T. Shipley, “Lidar Meteorology,” in Proceedings, International Geoscience and Remote Sensing Symposium, Washington, D.C., 8–10 June 1981.

S. T. Shipley, E. V. Browell, “Airborne Lidar Measurements of Mixed Layer Dynamics,” in Conference Abstracts, Eleventh International Laser Radar Conference, Madison, Wisc., 23–25 June 1982.

R. M. Schotland, “The Determination of the Vertical Profile of Atmospheric Gases by Means of a Ground Based Optical Radar,” in Proceedings, Third Symposium on Remote Sensing of the Environment, Oct. 1964 (U. Michigan, Ann Arbor, 1965).

National Center for Atmospheric Research, Annual Report, Fiscal Year 1978, Boulder, Colo.

E. V. Browell, S. T. Shipley, A. Rosenberg, D. Hogan, T. D. Wilkerson, “An Airborne Lidar for Simultaneous Measurements of Temperature and Water Vapor,” in Conference Abstracts, IAMAP Third Scientific Assembly, Hamburg, Federal Republic of Germany, 17–28 August 1981.

R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Airborne DIAL system schematic.

Fig. 2
Fig. 2

Airborne DIAL system installed in Wallops Flight Center Electra aircraft.

Fig. 3
Fig. 3

Overall DIAL transmitter configuration.

Fig. 4
Fig. 4

Nd:YAG pumped dye laser layout.

Fig. 5
Fig. 5

Typical fringe pattern for the dye laser beam using a Fabry-Perot interferometer. The trace represents an 80-shot average.

Fig. 6
Fig. 6

Airborne DIAL transmitter optical system configuration.

Fig. 7
Fig. 7

Wavelength stabilization system schematic.

Fig. 8
Fig. 8

Components of airborne DIAL data acquisition system.

Fig. 9
Fig. 9

Comparison of DIAL and in situ ozone profile measurements on 22 May 1980.

Fig. 10
Fig. 10

Ozone profile comparison of DIAL and in situ measurements on 29 May 1980.

Fig. 11
Fig. 11

DIAL, Cessna, and tethered balloon ozone data on 5 June 1980.

Fig. 12
Fig. 12

Sequential ozone profiles obtained by the airborne DIAL system on 5 June 1980. The zero ozone concentration level is shifted by 30 ppbv for each subsequent ozone profile. The subscript identifies the appropriate profile.

Fig. 13
Fig. 13

Intensity modulated display of aerosol data taken on 24 July 1980 at about 1500 EDT over Virginia and the Chesapeake Bay. The temperature and dew point profiles were obtained over land by the 1400 EDT radiosonde released by Dulles airport (near Washington, D.C.).

Fig. 14
Fig. 14

Simulation of DIAL measurement uncertainties for tropopause folding investigation with an on-line wavelength at 290 nm and an off-line wavelength at 300 nm. A horizontal resolution of 1 km (100-shot average at 10 Hz), a vertical resolution of 200 m, and an aircraft altitude of 4 km was assumed in this calculation.

Tables (2)

Tables Icon

Table I Airborne DIAL Transmitter Characteristics

Tables Icon

Table II Airborne DIAL Receiver Characteristics

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = 1 2 ( R 2 R 1 ) ( σ on σ off ) ln P off ( R 2 ) P on ( R 1 ) P off ( R 1 ) P on ( R 2 ) ,

Metrics