Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  2. R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
    [CrossRef]
  3. B. Cannahan, H. A. Luther, J. O. Wilkes, Applied Numerical Analysis (Wiley, New York, 1969).

1981 (1)

1966 (1)

R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Cannahan, B.

B. Cannahan, H. A. Luther, J. O. Wilkes, Applied Numerical Analysis (Wiley, New York, 1969).

Collis, R. T. H.

R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Klett, J. D.

Luther, H. A.

B. Cannahan, H. A. Luther, J. O. Wilkes, Applied Numerical Analysis (Wiley, New York, 1969).

Wilkes, J. O.

B. Cannahan, H. A. Luther, J. O. Wilkes, Applied Numerical Analysis (Wiley, New York, 1969).

Appl. Opt. (1)

Q. J. R. Meteorol. Soc. (1)

R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
[CrossRef]

Other (1)

B. Cannahan, H. A. Luther, J. O. Wilkes, Applied Numerical Analysis (Wiley, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Plot of the function y2(Ω) showing the location of the roots to Eq. (6).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

β = B σ k ,
S ( r ) ln [ r 2 P ( r ) ] = C 1 + k ln σ 2 0 r σ d r .
σ ( r ) = exp [ ( S S m ) / k ] { σ m 1 + 2 k r r m exp [ ( S S m ) / k ] d r } ,
σ ¯ m r 1 0 r m σ d r = ( r m r 0 ) 1 r 0 r m σ d r σ m ,
S m = C 1 + k ln σ m 2 r m σ m .
G m = ln Ω m r m ( r m r 0 ) ln ( 1 + I Ω m ) ,
I ( r m r 0 ) 1 r 0 r m exp [ ( S S m ) / k ] d r ,
G m = ( S m C 1 ) k + ln [ 2 ( r m r 0 ) k ] = ln { 2 ( k + 1 ) / k k [ P ( r m ) P 0 ] 1 / k ( r m 2 A ) 1 / k ( r m r 0 ) ( c τ B ) 1 / k } .
y 2 ( Ω ) = ln Ω r m ( r m r 0 ) ln ( 1 + I Ω ) .
exp Ω m < 1 + ( α 1 ) α α / ( α 1 ) exp [ α Ω ¯ m ( α 1 ) ] ,

Metrics