Abstract

A method for measuring transmittance and reflectance of plant material in glass cuvettes using a single-beam spectrophotometer with an integrating sphere attachment is described. This method requires extensive processing of the originally measured values as these are distorted by multiple reflections of the diffusely transmitted or reflected light. Most of the theories on light interaction with scattering materials require data processing to meet the theory’s prerequisites. Therefore, the complicated evaluation does not restrict the applicability of the method. Special attention is given to the 60°/diffuse incidence requirement of the Kubelka-Munk theory. It is argued that the 60°/diffuse requirement is not essential for thick scattering layers. It is further stressed that a better knowledge of the optical properties should be of great help in many fields of biology.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kubelka, F. MunkZ. Tech. Phys. 12, 593 (1931).
  2. M. Seyfried, L. Fukshansky, Appl. Opt. (1983); in preparation
  3. P. Kubelka, J. Opt. Soc. Am. 44, 330 (1954).
    [CrossRef]
  4. H. W. Gausman, W. A. Allen, D. E. Escobar, Appl. Opt. 13, 109 (1974).
    [CrossRef] [PubMed]
  5. H. T. Breece, R. A. HolmesAppl. Opt. 10, 119 (1971).
    [CrossRef]
  6. G. Kortum, Reflectance Spectroscopy (Springer, Berlin, 1969).
    [CrossRef]
  7. A. S. Stenius, J. Opt. Soc. Am. 45, 727 (1955).
    [CrossRef]
  8. G. Mie, Ann. Phys. 25, 377 (1908).
    [CrossRef]
  9. N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
    [CrossRef]
  10. W. A. Allen, H. W. Gausman, A. J. Richardson, J. Opt. Soc. Am. 60, 542 (1970).
    [CrossRef]
  11. A. Reule, Optik 34, 387 (1971).
  12. R. G. Giovanelli, Opt. Acta 2, 153 (1955).
    [CrossRef]
  13. H. W. Gausman, Remote Sensing Environ. 6, 1 (1977).
    [CrossRef]
  14. W. Collins, Photogramm. Eng. Remote Sensing 44, 43 (1978).
  15. J. R. Thomas, A. H. Gerbermann, Photogramm. Eng. 43, 1257 (1977).
  16. H. W. Gausman, W. A. Allen, R. Cardenas, A. J. Richardson, Appl. Opt. 9, 545 (1970).
    [CrossRef] [PubMed]
  17. J. R. Thomas, H. W. Gausman, Agron. J. 69, 799 (1977).
    [CrossRef]
  18. A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
    [CrossRef]
  19. W. Ruhle, A. Wild, Planta 146, 551 (1979).
    [CrossRef]
  20. D. F. Mandoli, W. R. Briggs, Plant Cell Environ. 5, 137 (1982).
  21. A. Wild, Ber. Dtsch. Bot. Ges. 92, 341 (1979).
  22. K. M. Hartmann, I. C. Unser, Ber. Dtsch. Bot. Ges. 85, 481 (1972).

1982 (1)

D. F. Mandoli, W. R. Briggs, Plant Cell Environ. 5, 137 (1982).

1979 (3)

A. Wild, Ber. Dtsch. Bot. Ges. 92, 341 (1979).

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

W. Ruhle, A. Wild, Planta 146, 551 (1979).
[CrossRef]

1978 (1)

W. Collins, Photogramm. Eng. Remote Sensing 44, 43 (1978).

1977 (3)

J. R. Thomas, A. H. Gerbermann, Photogramm. Eng. 43, 1257 (1977).

H. W. Gausman, Remote Sensing Environ. 6, 1 (1977).
[CrossRef]

J. R. Thomas, H. W. Gausman, Agron. J. 69, 799 (1977).
[CrossRef]

1974 (1)

1972 (1)

K. M. Hartmann, I. C. Unser, Ber. Dtsch. Bot. Ges. 85, 481 (1972).

1971 (2)

1970 (2)

1963 (1)

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

1955 (2)

1954 (1)

1931 (1)

P. Kubelka, F. MunkZ. Tech. Phys. 12, 593 (1931).

1908 (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Allen, W. A.

Breece, H. T.

Briggs, W. R.

D. F. Mandoli, W. R. Briggs, Plant Cell Environ. 5, 137 (1982).

Cardenas, R.

Collins, W.

W. Collins, Photogramm. Eng. Remote Sensing 44, 43 (1978).

Escobar, D. E.

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

H. W. Gausman, W. A. Allen, D. E. Escobar, Appl. Opt. 13, 109 (1974).
[CrossRef] [PubMed]

Fukshansky, L.

M. Seyfried, L. Fukshansky, Appl. Opt. (1983); in preparation

Garza, M. V.

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

Gausman, H. W.

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

J. R. Thomas, H. W. Gausman, Agron. J. 69, 799 (1977).
[CrossRef]

H. W. Gausman, Remote Sensing Environ. 6, 1 (1977).
[CrossRef]

H. W. Gausman, W. A. Allen, D. E. Escobar, Appl. Opt. 13, 109 (1974).
[CrossRef] [PubMed]

W. A. Allen, H. W. Gausman, A. J. Richardson, J. Opt. Soc. Am. 60, 542 (1970).
[CrossRef]

H. W. Gausman, W. A. Allen, R. Cardenas, A. J. Richardson, Appl. Opt. 9, 545 (1970).
[CrossRef] [PubMed]

Gerbermann, A. H.

J. R. Thomas, A. H. Gerbermann, Photogramm. Eng. 43, 1257 (1977).

Giovanelli, R. G.

R. G. Giovanelli, Opt. Acta 2, 153 (1955).
[CrossRef]

Hartmann, K. M.

K. M. Hartmann, I. C. Unser, Ber. Dtsch. Bot. Ges. 85, 481 (1972).

Holmes, R. A.

Kortum, G.

G. Kortum, Reflectance Spectroscopy (Springer, Berlin, 1969).
[CrossRef]

Kubelka, P.

P. Kubelka, J. Opt. Soc. Am. 44, 330 (1954).
[CrossRef]

P. Kubelka, F. MunkZ. Tech. Phys. 12, 593 (1931).

Mandoli, D. F.

D. F. Mandoli, W. R. Briggs, Plant Cell Environ. 5, 137 (1982).

Melamed, N. T.

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

Mie, G.

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Munk, F.

P. Kubelka, F. MunkZ. Tech. Phys. 12, 593 (1931).

Peynaldo, A.

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

Reule, A.

A. Reule, Optik 34, 387 (1971).

Richardson, A. J.

Rodriguez, R. R.

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

Ruhle, W.

W. Ruhle, A. Wild, Planta 146, 551 (1979).
[CrossRef]

Seyfried, M.

M. Seyfried, L. Fukshansky, Appl. Opt. (1983); in preparation

Stenius, A. S.

Thomas, J. R.

J. R. Thomas, H. W. Gausman, Agron. J. 69, 799 (1977).
[CrossRef]

J. R. Thomas, A. H. Gerbermann, Photogramm. Eng. 43, 1257 (1977).

Unser, I. C.

K. M. Hartmann, I. C. Unser, Ber. Dtsch. Bot. Ges. 85, 481 (1972).

Wild, A.

A. Wild, Ber. Dtsch. Bot. Ges. 92, 341 (1979).

W. Ruhle, A. Wild, Planta 146, 551 (1979).
[CrossRef]

Agron. J. (1)

J. R. Thomas, H. W. Gausman, Agron. J. 69, 799 (1977).
[CrossRef]

Ann. Phys. (1)

G. Mie, Ann. Phys. 25, 377 (1908).
[CrossRef]

Appl. Opt. (3)

Ber. Dtsch. Bot. Ges. (2)

A. Wild, Ber. Dtsch. Bot. Ges. 92, 341 (1979).

K. M. Hartmann, I. C. Unser, Ber. Dtsch. Bot. Ges. 85, 481 (1972).

Cryobiology (1)

A. Peynaldo, H. W. Gausman, D. E. Escobar, R. R. Rodriguez, M. V. Garza, Cryobiology 16, 63 (1979).
[CrossRef]

J. Appl. Phys. (1)

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Acta (1)

R. G. Giovanelli, Opt. Acta 2, 153 (1955).
[CrossRef]

Optik (1)

A. Reule, Optik 34, 387 (1971).

Photogramm. Eng. (1)

J. R. Thomas, A. H. Gerbermann, Photogramm. Eng. 43, 1257 (1977).

Photogramm. Eng. Remote Sensing (1)

W. Collins, Photogramm. Eng. Remote Sensing 44, 43 (1978).

Plant Cell Environ. (1)

D. F. Mandoli, W. R. Briggs, Plant Cell Environ. 5, 137 (1982).

Planta (1)

W. Ruhle, A. Wild, Planta 146, 551 (1979).
[CrossRef]

Remote Sensing Environ. (1)

H. W. Gausman, Remote Sensing Environ. 6, 1 (1977).
[CrossRef]

Z. Tech. Phys. (1)

P. Kubelka, F. MunkZ. Tech. Phys. 12, 593 (1931).

Other (2)

M. Seyfried, L. Fukshansky, Appl. Opt. (1983); in preparation

G. Kortum, Reflectance Spectroscopy (Springer, Berlin, 1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Lightspot on a sample illuminated by a small-angle fiber optic (22° aperture, 1 mm 0) with 60° inclination from perpendicular. The object is covered by a covering glass 0.2 mm thick. Note that a large amount of the light hits the object at angles even larger than 60°, and that the light is refracted to smaller angles at the boundary of the object (n1 = 1.4).

Fig. 2
Fig. 2

(Left) schematic view of the object between the two cover glasses. (Right) schematic view of one cover glass and adjacent object boundary. Transmission is 1–remission (nonabsorbing layers). The differently indexed R and T are used in the formulas derived in the text. Primes indicate values for specular light, c is for cover, and u and l stand for upper and lower surface.

Fig. 3
Fig. 3

(a) Reflectance and transmittance values of a moderately green cotyledon measured at 0° (= perpendicular) incidence of light. The dashed lines are reflectance with light incident on the upper face, dot–dash lines are for reflectance from the lower face, and the unbroken line is for transmittance. (b) The same cotyledon measured at 60° incidence.

Tables (1)

Tables Icon

Table I Reflectance Values Used for the Evaluation of the Optical Parameters of the Cover

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R n 1 n 0 = 1 T n 0 n 1 n 1 2 .
F ( T , R u , R l ) = [ F 1 ( T , R u , R l ) F 2 ( T , R u , R l ) F 3 ( T , R u , R l ) ] = ( 0 0 0 ) ,
F 1 = T c T c T D T c s c , F 2 = T c T c R u + T c T c R c T 2 D ( R c s u c R c ) ( 1 R c R u ) , F 3 = T c T c R l + T c T c R c T 2 D ( R c s l c R c ) ( 1 R c R l ) , D = 1 R c ( R u + R l R c R u R l + T R c ) .

Metrics