Abstract

A study of gradient-index eyepieces was conducted. The general performance of homogeneous eyepieces having two and three elements was examined. Axial gradients were introduced into the eyepieces in an attempt to increase the half-fields of view to 25° and extend the eye reliefs to 12 mm. The homogeneous eyepieces examined were of the Huygenian, Ramsden, and Kellner configurations. These eyepieces were scaled to the specifications of f/3, 21.4-mm focal length, and magnifying power of 10×. These classic systems were optimized to produce two- and three-element homogeneous eyepieces to determine how homogeneous systems could perform with the extended eye relief and larger field of view. Axial gradient eyepieces having two and three elements were designed to the same specifications. The balance of third-order aberrations, color, and distortion was maintained or improved compared to the homogeneous systems.. The additional degrees of freedom associated with the gradient made it possible to extend the eye relief and increase the field of view of these eyepieces.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).
  2. L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, J. M. Stagaman, Appl. Opt. 21, 993 (1982).
    [CrossRef] [PubMed]
  3. D. T. Moore, Appl. Opt. 19, 1035 (1980).
    [CrossRef] [PubMed]
  4. P. J. Sands, J. Opt. Soc. Am. 72, 1112A (1982).
  5. R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978), pp. 335–345.
  6. R. Kingslake, Applied Optics and Optical Engineering, Vol. 3 (Academic, New York, 1965), pp. 331–345.
  7. W. Mandler, Leitz (Canada); personal communication.

1982 (2)

1980 (2)

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

D. T. Moore, Appl. Opt. 19, 1035 (1980).
[CrossRef] [PubMed]

Atkinson, L. G.

Houde-Walter, S. N.

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978), pp. 335–345.

R. Kingslake, Applied Optics and Optical Engineering, Vol. 3 (Academic, New York, 1965), pp. 331–345.

Mandler, W.

W. Mandler, Leitz (Canada); personal communication.

McLaughlin, P. O.

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

Miceli, J. J.

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

Moore, D. T.

L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, J. M. Stagaman, Appl. Opt. 21, 993 (1982).
[CrossRef] [PubMed]

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

D. T. Moore, Appl. Opt. 19, 1035 (1980).
[CrossRef] [PubMed]

Ryan, D. P.

L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, J. M. Stagaman, Appl. Opt. 21, 993 (1982).
[CrossRef] [PubMed]

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

Sands, P. J.

P. J. Sands, J. Opt. Soc. Am. 72, 1112A (1982).

Stagaman, J. M.

L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, J. M. Stagaman, Appl. Opt. 21, 993 (1982).
[CrossRef] [PubMed]

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

P. J. Sands, J. Opt. Soc. Am. 72, 1112A (1982).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

P. O. McLaughlin, J. J. Miceli, D. T. Moore, D. P. Ryan, J. M. Stagaman, Proc. Soc. Photo-Opt. Instrum. Eng. 237, 369 (1980).

Other (3)

R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978), pp. 335–345.

R. Kingslake, Applied Optics and Optical Engineering, Vol. 3 (Academic, New York, 1965), pp. 331–345.

W. Mandler, Leitz (Canada); personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the Huygenian eyepiece with field and percent distortion curves for focal length (fl) = 21.4 mm, f/3, 10× magnifiying power; paraxial axial color (PAC) and paraxial lateral color (PLC) for half-field of view (HFOV) = 25°.

Fig. 2
Fig. 2

Ramsden eyepiece with field and percent distortion curves for fl = 21.4, f/3, 10× magnifying power.

Fig. 3
Fig. 3

Schematic of a homogeneous two-element eyepiece with field and percent distortion curves for fl = 21.4 f/3, 10× magnifying power, eye relief = 12 mm, HFOV = 25°.

Fig. 4
Fig. 4

Effect of a single gradient in a two-element design: (a) tangential field curves; (b) sagittal field curves; (c) percent distortion curves; (d) tangential transverse aberration plots for fractional object height (FOB) = 0.9; (e) sagittal transverse aberration plots for FOB = 0.9. The homogeneous curves are given by the solid lines, and the effect of introducing a range of gradients is shown by the dashed and dotted lines.

Fig. 5
Fig. 5

Schematic of the gradient two-element eyepiece with base glass and Δn given. The arrow indicates the direction of increasing index. Note the correction of the field and distortion curves to 25°

Fig. 6
Fig. 6

Transverse aberration plots for FOB = 0.0 and 0.9 for the gradient two-element eyepiece.

Fig. 7
Fig. 7

Kellner eyepiece with field and percent distortion curves for fl = 21.4, f/3, 10× magnifying power.

Fig. 8
Fig. 8

Schematic of a homogeneous three-element eyepiece with field and percent distortion curves for fl = 21.4, f/3, 10× magnifying power, eye relief = 12 mm, HFOV = 25°.

Fig. 9
Fig. 9

Gradient three-element eyepiece for a fixed system (percent distortion less than −3.5%) with base glasses and Δn given.

Fig. 10
Fig. 10

Transverse aberration plots for FOB = 0.0 and 0.9 for the fixed gradient three-element eyepiece.

Fig. 11
Fig. 11

Gradient three-element eyepiece for a scanning system (percent distortion targeted at −6.5%) with base glasses and Δn given.

Fig. 12
Fig. 12

Transverse aberration plots for FOB = 0.0 and 0.9 for the scanning gradient three-element eyepiece.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

% distortion = tan θ θ tan θ × 100.
f / No . = 3 , focal length = 21.4 mm , eye relief = 12 mm , magnifying power = 10 × , half-field of view = 25 °

Metrics