Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (U.S. GPO, Washington, D.C., 1970).
  2. H. Hochstadt, The Functions of Mathematical Physics (Wiley, New York, 1971).
  3. G. Blanch, Soc. Ind. Appl. Math. Rev. 6, 383 (1969).

1969 (1)

G. Blanch, Soc. Ind. Appl. Math. Rev. 6, 383 (1969).

Blanch, G.

G. Blanch, Soc. Ind. Appl. Math. Rev. 6, 383 (1969).

Hochstadt, H.

H. Hochstadt, The Functions of Mathematical Physics (Wiley, New York, 1971).

Soc. Ind. Appl. Math. Rev. (1)

G. Blanch, Soc. Ind. Appl. Math. Rev. 6, 383 (1969).

Other (2)

M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (U.S. GPO, Washington, D.C., 1970).

H. Hochstadt, The Functions of Mathematical Physics (Wiley, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table I Values of the Factor λ [Defined by Eq. (7)] for Various Arguments and Orders of the Modified Bessel Function of the First Kind

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I γ γ = ln ( γ 2 ) I γ ( z ) F ( γ , z ) ,
F ( γ , z ) = k = 0 ψ ( γ + k + 1 ) Γ ( γ + k + 1 ) k ! ( z 2 ) 2 k + γ .
ψ ( η + 1 ) = ψ ( η ) + ( 1 / η ) , Γ ( η + 1 ) = η Γ ( η ) ,
F ( γ, X ) = { ψ ( γ + 1 ) + [ X 2 ( γ + 1 ) ] 2 } I γ ( X ) .
I γ ( X ) = I 0 ( X ) · exp { ln [ X γ 2 γ Π ( γ ) ] γ γ + 1 ( X 2 ) 2 } ,
Π ( γ ) = { Γ ( γ + 1 ) for noninteger γ , γ ! for integer γ .
I 0 ( X ) = k = 0 ( k ! ) 2 ( X 2 ) 2 k .
λ = [ I γ ( X ) / I 0 ( X ) ] N [ I γ ( X ) / I 0 ( X ) ] P [ I γ ( X ) / I 0 ( X ) ] N ,

Metrics