Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  2. E. Friedman, L. Poole, A. Cherdak, W. Houghton, Appl. Opt. 19, 1688 (1980).
    [CrossRef] [PubMed]
  3. R. P. Bukata, J. E. Bruton, J. H. Jerome, Appl. Opt. 19, 1550 (1980).
    [CrossRef] [PubMed]
  4. L. Papa, Arch. Meteorol. Geophys. Bioklimatol. Ser. A 31, 157 (1982).
    [CrossRef]

1982

L. Papa, Arch. Meteorol. Geophys. Bioklimatol. Ser. A 31, 157 (1982).
[CrossRef]

1980

Appl. Opt.

Arch. Meteorol. Geophys. Bioklimatol. Ser. A

L. Papa, Arch. Meteorol. Geophys. Bioklimatol. Ser. A 31, 157 (1982).
[CrossRef]

Other

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Terminal of a double fiber cable. Fiber diameter d = 0.2 mm; fiber spatial separation s = 0.4 mm; angular beam divergence θ0 = 20°.

Fig. 2
Fig. 2

Schematic representation of turbid waterfront of square function type moving against the terminal of a double fiber cable: (a) instrument response to the passage of the turbidity front (b).

Fig. 3
Fig. 3

Instrument response to a passage of a turbid waterfront in the Gulf of Genoa. The signal is characterized by two exponential slopes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = β ( 180 ° ) 0 + F 0 / S exp ( 2 C r ) S d r ,
I = β F 0 / 2 C or 2 I / F 0 = β / C ;
I = β 1 F 0 0 X exp ( 2 C 1 r ) d r + β 2 F 0 exp ( 2 C 1 X ) X + × exp [ 2 C 2 ( r X ) ] d r .
I = F 0 / 2 [ β 1 / C 1 + ( β 2 / C 2 β 1 / C 1 ) exp ( 2 C 1 X ) ] ,
S = 1 + ( β 2 C 1 β 1 C 2 1 ) exp ( 2 C 1 X ) .
S = β 2 C 1 β 1 C 2 + ( 1 β 2 C 1 β 1 C 2 ) exp ( 2 C 2 X ) .

Metrics