Abstract

The pseudo-Brewster angle of minimum reflectance for the p polarization, the corresponding angle for the s polarization, and the second-Brewster angle of minimum ratio of the p and s reflectances are all determined as functions of the thickness of a transparent film coating an absorbing substrate by numerical solution of the exact equations that govern such angles of the form Re(Z′/Z) = 0, where Z = Rp, Rs, or ρ represent the complex amplitude-reflection coefficients for the p and s polarizations and their ratio (ρ = Rp/Rs), respectively, and Z′ is the angle-of-incidence derivative of Z. Results that show these angles and their associated reflectance and reflectance-ratio minima are presented for the SiO2–Si film–substrate system at wavelength λ = 0.6328 μm and film thickness of up to four periods (≃1.2 μm). Applications of these results are proposed in film-thickness measurement and control.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription