Abstract

Narrowband grating filters were fabricated in GeO2 thin-film optical waveguides by optically induced changes in the refractive index. Intense counterpropagating laser beams inside the waveguide resulted in distributed feedback reflectors having a peak efficiency of 40%. The spectral response of the filters was measured by thermal tuning of the center frequency and agreed with the results of a coupled-mode analysis. The filter bandwidths were <0.01 nm.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
    [CrossRef]
  2. A. M. Glass, Opt. Eng. 17, 470 (1978).
    [CrossRef]
  3. W. S. Goruk, P. J. Vella, R. Normandin, G. I. Stegeman, Appl. Opt. 20, 4024 (1981).
    [CrossRef] [PubMed]
  4. D. L. Wood, K. Nassau, D. L. Chadwick, Appl. Opt. 21, 4276 (1982).
    [CrossRef] [PubMed]
  5. G. G. Devyatykh et al., Sov. J. Quantum Electron. 10, 900 (1980).
    [CrossRef]
  6. Yin Zhong-Yi, B. K. Garside, Appl. Opt. 21, 4324 (1982).
    [CrossRef]
  7. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
    [CrossRef] [PubMed]
  8. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [CrossRef] [PubMed]
  9. Yin Zhong-Yi, B. K. Garside, Appl. Opt. 22, 1023 (1983).
    [CrossRef]
  10. A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
    [CrossRef]

1983

1982

1981

1980

G. G. Devyatykh et al., Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

1978

1974

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

1973

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

Chadwick, D. L.

Devyatykh, G. G.

G. G. Devyatykh et al., Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Fujii, Y.

Garside, B. K.

Glass, A. M.

A. M. Glass, Opt. Eng. 17, 470 (1978).
[CrossRef]

Goruk, W. S.

Hill, K. O.

Johnson, D. C.

Kawasaki, B. S.

Kogelnik, H.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Lam, D. K. W.

Nassau, K.

Normandin, R.

Schmidt, R. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Shank, C. V.

D. C. Flanders, H. Kogelnik, R. V. Schmidt, C. V. Shank, Appl. Phys. Lett. 24, 194 (1974).
[CrossRef]

Stegeman, G. I.

Vella, P. J.

Wood, D. L.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

Zhong-Yi, Yin

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Waveguide attenuation vs optical wavelength. Films were deposited onto fused quartz substrates at a rate of 5 Å/min.

Fig. 2
Fig. 2

Schematic of the apparatus for fabricating waveguide filters.

Fig. 3
Fig. 3

Relative reflected intensity vs exposure time.

Fig. 4
Fig. 4

Thermal tuning curve of a reflection filter. Figures 3 and 4 apply to the same filter.

Fig. 5
Fig. 5

Schematic of the apparatus for measuring the thermal tuning rate of the effective index of refraction.

Fig. 6
Fig. 6

Experimentally observed reflection spectrum compared to the theoretically predicted shape of a filter which has the same peak efficiency.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ n d n d T Δ T ,
d n d T = Δ N Δ T λ 0 L ,
E ( z , t ) = B exp ( α z 2 ) exp [ i ( ω t β 0 z ) ] + A exp ( α z 2 ) exp [ i ( ω t + β 0 z ) ] .
| E ( z ) | 2 = B 2 exp ( α z ) + A 2 exp ( α z ) + 2 A B cos ( 2 β 0 z ) .
( z ) = + Δ cos ( 2 β 0 z ) ,
R = | κ sinh ( SL ) ( α / 2 + i Δ β ) sinh ( SL ) + S cosh ( SL ) | 2 ,

Metrics