Abstract

The transmittances and reflectances of cultured crystalline quartz, Suprasil, Suprasil W, and Infrasil were compared over the wavelength region from 2 to 1000 μm. The high-water content of Suprasil and the low-water content of cultured crystalline quartz, Suprasil W, and Infrasil were determined by their transmittances measured at 2.73 μm where water content causes high absorption in optical materials. The fact that the fused silicas, both with high- and low-water content, had identical far-IR transmittances and that their transmittances were greatly inferior to that of crystalline quartz led to the conclusion that their inferior transmittance is due to their amorphous structure and not to their water content.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, W. R. Hunter, Appl. Opt. 17, 2310 (1978).
    [CrossRef] [PubMed]
  2. W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
    [CrossRef]
  3. E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
    [CrossRef]
  4. E. V. Loewenstein, D. R. Smith, R. L. Morgan, Appl. Opt. 12, 398 (1973).
    [CrossRef] [PubMed]
  5. K. D. Cummings, D. B. Tanner, J. Opt. Soc. Am. 70, 123 (1980).
    [CrossRef]
  6. C. M. Randall, R. D. Rawcliffe, Appl. Opt. 6, 1889 (1967).
    [CrossRef] [PubMed]
  7. T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
    [CrossRef]
  8. I. H. Hutchinson, Infrared Phys. 22, 117 (1982).
    [CrossRef]
  9. F. E. Terman, Electronic and Radio Engineering (McGraw-Hill, New York, 1955).
  10. G. Hass, J. B. Heaney, W. R. Hunter, in Physics of Thin Films, Vol. 12, G. Hass, M. H. Francombe, J. L. Vossen, Eds. (Academic, New York, 1982), pp. 1–51.

1982

I. H. Hutchinson, Infrared Phys. 22, 117 (1982).
[CrossRef]

1980

1978

G. Hass, W. R. Hunter, Appl. Opt. 17, 2310 (1978).
[CrossRef] [PubMed]

T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
[CrossRef]

1973

1967

1961

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Bell, E. E.

Chambers, W. G.

T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
[CrossRef]

Cummings, K. D.

Ford, J. E.

T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
[CrossRef]

Hass, G.

G. Hass, W. R. Hunter, Appl. Opt. 17, 2310 (1978).
[CrossRef] [PubMed]

G. Hass, J. B. Heaney, W. R. Hunter, in Physics of Thin Films, Vol. 12, G. Hass, M. H. Francombe, J. L. Vossen, Eds. (Academic, New York, 1982), pp. 1–51.

Heaney, J. B.

G. Hass, J. B. Heaney, W. R. Hunter, in Physics of Thin Films, Vol. 12, G. Hass, M. H. Francombe, J. L. Vossen, Eds. (Academic, New York, 1982), pp. 1–51.

Hunter, W. R.

G. Hass, W. R. Hunter, Appl. Opt. 17, 2310 (1978).
[CrossRef] [PubMed]

G. Hass, J. B. Heaney, W. R. Hunter, in Physics of Thin Films, Vol. 12, G. Hass, M. H. Francombe, J. L. Vossen, Eds. (Academic, New York, 1982), pp. 1–51.

Hutchinson, I. H.

I. H. Hutchinson, Infrared Phys. 22, 117 (1982).
[CrossRef]

Kleinman, D. A.

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Loewenstein, E. V.

Morgan, R. L.

Parker, T. J.

T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
[CrossRef]

Randall, C. M.

Rawcliffe, R. D.

Russell, E. E.

Smith, D. R.

Spitzer, W. G.

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Tanner, D. B.

Terman, F. E.

F. E. Terman, Electronic and Radio Engineering (McGraw-Hill, New York, 1955).

Appl. Opt.

Infrared Phys.

T. J. Parker, J. E. Ford, W. G. Chambers, Infrared Phys. 18, 215 (1978).
[CrossRef]

I. H. Hutchinson, Infrared Phys. 22, 117 (1982).
[CrossRef]

J. Opt. Soc. Am.

Phys. Rev.

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Other

F. E. Terman, Electronic and Radio Engineering (McGraw-Hill, New York, 1955).

G. Hass, J. B. Heaney, W. R. Hunter, in Physics of Thin Films, Vol. 12, G. Hass, M. H. Francombe, J. L. Vossen, Eds. (Academic, New York, 1982), pp. 1–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Idealized quartz crystal showing the orientation of the X-, Y-, and Z-cuts relative to the optical axis.1

Fig. 2
Fig. 2

Specular reflectometer for relative measurements at near-normal incidence.

Fig. 3
Fig. 3

Degree of polarization P and principal transmittances for parallel k1 and crossed k2 grid type polarizers.

Fig. 4
Fig. 4

Transmittance and reflectance of cultured crystalline quartz, 3 mm thick, for both O and E rays, over the wavelength range from 2 to 1000 μm.

Fig. 5
Fig. 5

Transmittance and reflectance of Suprasil, 1.5 mm thick, over the wavelength range from 2 to 1000 μm.

Fig. 6
Fig. 6

Transmittance and reflectance of Suprasil W, 1.5 mm thick, over the wavelength range from 2 to 1000 μm.

Fig. 7
Fig. 7

Transmittance and reflectance of Infrasil, 1.5 mm thick, over the wavelength range from 2 to 1000 μm.

Fig. 8
Fig. 8

Transmittances of cultured crystalline quartz, 1 and 3 mm thick, Suprasil and Suprasil W, both 1.5 mm thick, compared over the wavelength range from 2 to 1000 μm.

Fig. 9
Fig. 9

Measured far-IR transmittance of cultured crystalline quartz, 1 mm thick, compared with transmittances calculated from optical constants published by Loewenstein et al.4 (indicated by circles and squares).

Metrics