Abstract

Molybdenum (Mo) mirrors are being used in high-power infrared lasers and would be ideal for lasers operating in the visible and ultraviolet if lower-scatter surfaces could be produced. Surfaces prepared by two novel techniques have been found to be smoother and have lower scatter than conventionally polished material, which has a surface texture that profiles the grain structure of the bulk material. A dual-abrasive polishing technique has been found to produce surfaces that show almost no surface grain relief, have scattering levels as little as one-seventh that of conventionally polished Mo, and roughnesses as small as 15 Å rms measured from surface profiles. Sputtering a layer of Mo onto a previously polished Mo surface and then polishing the sputtered layer produces a surface that is very similar to that of polished glass in profile and scattering properties. Scattering levels approximately one-tenth that of conventionally polished bulk Mo and roughnesses ∼13-Å rms have been measured on such surfaces. However, laser damage thresholds measured at 2.7 μm show that higher scatter, conventionally polished Mo surfaces have higher melt thresholds than do the lower-scatter dual-abrasive polished and sputtered Mo surfaces.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, S. M. Wong, G. Krauss, Appl. Opt. 19, 3562 (1980).
    [CrossRef] [PubMed]
  2. D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).
  3. J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).
  4. J. M. Bennett, J. H. Dancy, Appl. Opt. 20, 1785 (1981).
    [CrossRef] [PubMed]
  5. E. L. Church, J. M. Zavada, Appl. Opt. 14, 1788 (1975).
    [CrossRef] [PubMed]
  6. H. E. Bennett, Opt. Eng. 17, 480 (1978).
    [CrossRef]
  7. P. C. Archibald, H. E. Bennett, Opt. Eng. 17, 647 (1978).
    [CrossRef]
  8. J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 19, 669 (1980).
    [CrossRef] [PubMed]
  9. J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 22, 3203 (1983).
    [CrossRef]
  10. J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
    [CrossRef]

1983

J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 22, 3203 (1983).
[CrossRef]

1981

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).

J. M. Bennett, J. H. Dancy, Appl. Opt. 20, 1785 (1981).
[CrossRef] [PubMed]

1980

1978

H. E. Bennett, Opt. Eng. 17, 480 (1978).
[CrossRef]

P. C. Archibald, H. E. Bennett, Opt. Eng. 17, 647 (1978).
[CrossRef]

1975

Archibald, P. C.

P. C. Archibald, H. E. Bennett, Opt. Eng. 17, 647 (1978).
[CrossRef]

Bender, J. W.

D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).

Bennett, H. E.

H. E. Bennett, Opt. Eng. 17, 480 (1978).
[CrossRef]

P. C. Archibald, H. E. Bennett, Opt. Eng. 17, 647 (1978).
[CrossRef]

Bennett, J. M.

Church, E. L.

Dancy, J. H.

Decker, D. L.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Elson, J. M.

J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 22, 3203 (1983).
[CrossRef]

J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 19, 669 (1980).
[CrossRef] [PubMed]

Ewing, D. G.

D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).

Faith, W. N.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Grandjean, D. J.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Klugman, A.

J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).

Knoll, R.

J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).

Krauss, G.

Laegreid, N.

J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).

McGillicuddy, R.

D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).

Porteus, J. O.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Rahn, J. P.

J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 22, 3203 (1983).
[CrossRef]

J. M. Elson, J. P. Rahn, J. M. Bennett, Appl. Opt. 19, 669 (1980).
[CrossRef] [PubMed]

Seitel, S. C.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Soileau, M. J.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Stanford, J. L.

J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).

Wong, S. M.

Zavada, J. M.

Appl. Opt.

IEEE J. Quantum Electron.

J. O. Porteus, D. L. Decker, W. N. Faith, D. J. Grandjean, S. C. Seitel, M. J. Soileau, IEEE J. Quantum Electron. QE-17, 2078 (1981).
[CrossRef]

Opt. Eng.

H. E. Bennett, Opt. Eng. 17, 480 (1978).
[CrossRef]

P. C. Archibald, H. E. Bennett, Opt. Eng. 17, 647 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

D. G. Ewing, J. W. Bender, R. McGillicuddy, Proc. Soc. Photo-Opt. Instrum. Eng. 288, 136 (1981).

Other

J. L. Stanford, N. Laegreid, R. Knoll, A. Klugman, “Sputtered Molybdenum for Thin Mirror Faceplate Refurbishment,” in Proceedings, High Power Laser Optical Components Meeting, 19–20 November 1981,B. Hall, Ed. Air Force Wright Aeronautical Laboratories, Dayton, Ohio, 1984, (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Nomarski micrographs of three types of Mo surfaces: conventionally polished bulk Mo (left), dual-abrasive polished bulk Mo (center), and polished sputtered Mo (right).

Fig. 2
Fig. 2

Nomarski micrographs of a Mo surface at selected stages during the grinding and polishing process.

Fig. 3
Fig. 3

Bright field and interference contrast (Nomarski) micrographs of a cross section of metallurgically polished and etched sputtered Mo deposited onto bulk Mo. The light contrast regions in the sputtered layer are apparently large epitaxial grains. (Photos courtesy of Nils Laegreid, Battelle Pacific Northwest Laboratories.)

Fig. 4
Fig. 4

Surface profiles of the three Mo surfaces shown in Fig. 1 for a profile length of 600 μm. Measured roughness values are shown at the left of the profiles.

Fig. 5
Fig. 5

Surface profiles of the three Mo surfaces shown in Fig. 1 for a profile length of 60 μm. Measured roughness values are shown at the left of the profiles.

Fig. 6
Fig. 6

Relation between rms roughness obtained from surface profile measurements and surface spatial wavelength for several Mo surfaces. Bulk Nos. 1 and 3 are conventionally polished Mo; Bulk Nos. B and C are dual-abrasive polished Mo; Sputtered No. 1 is polished sputtered Mo on bulk Mo. The curve for polished fused quartz is shown for comparison.

Fig. 7
Fig. 7

Measured integrated scattering from several Mo surfaces. Values in the angular region 0.3–3° were integrated from angular scattering measurements (Ref. 8), while the 3–80° values were measured directly. Bulk Nos. 1,2, and 3 are conventionally polished Mo; Bulk Nos. A and B are dual-abrasive polished Mo; Sputtered No. 1 is polished sputtered Mo on bulk Mo.

Fig. 8
Fig. 8

Relation between the surface spatial wavelength and scattering angle for normally incident light of wavelength 6328 Å.

Fig. 9
Fig. 9

Photographs of the near-angle scattering for the three Mo surfaces shown in Fig. 1.

Fig. 10
Fig. 10

Roughnesses of the same Mo surfaces as in Fig. 7 determined from scattered light (3–80° scattering angles) and profile measurements (13-μm and 1-mm profile lengths).

Fig. 11
Fig. 11

Roughnesses of the same Mo surfaces as in Fig. 7 determined from scattered light (0.3–80° scattering angles) and profile measurements (100-μm and 1-mm profile lengths).

Fig. 12
Fig. 12

Multithreshold damage levels at 2.7 μm for polished sputtered Mo No. 1 on bulk Mo.

Fig. 13
Fig. 13

Multithreshold damage levels at 2.7 μm for dual-abrasive polished Mo No. B.

Fig. 14
Fig. 14

Multithreshold damage levels at 2.7 μm for conventionally polished Mo No. 3.

Tables (1)

Tables Icon

Table I Melt Thresholds for Various Polished Mo Samples at HF Wavelengths (2.7 μm); Pulse Length 100 nsec; Spot Size 60 μm

Metrics