Abstract

The Hartmann test has been used with great success to determine figuring errors in large aspherical concave surfaces for telescope mirrors. Here, a mathematical model is presented that allows us to compute the optimum geometrical parameters for this test. It is assumed that the light source is placed near the center of curvature.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ghozeil, in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), Chap. 10.
  2. I. Ghozeil, J. E. Simmons, Appl. Opt. 13, 1773 (1974).
    [CrossRef] [PubMed]
  3. E. A. Vitrichenko, Sov. Astron. 20, No 3, 373 (1976).
  4. D. Malacara, Ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.

1976 (1)

E. A. Vitrichenko, Sov. Astron. 20, No 3, 373 (1976).

1974 (1)

Ghozeil, I.

I. Ghozeil, J. E. Simmons, Appl. Opt. 13, 1773 (1974).
[CrossRef] [PubMed]

I. Ghozeil, in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), Chap. 10.

Simmons, J. E.

Vitrichenko, E. A.

E. A. Vitrichenko, Sov. Astron. 20, No 3, 373 (1976).

Appl. Opt. (1)

Sov. Astron. (1)

E. A. Vitrichenko, Sov. Astron. 20, No 3, 373 (1976).

Other (2)

D. Malacara, Ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.

I. Ghozeil, in Optical Shop Testing, D. Malacara, Ed. (Wiley, New York, 1978), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of wave front reflected. The rays from the edge and related parameters are shown.

Fig. 2
Fig. 2

Hartmann plate image outside the center of curvature for the 257-cm (101-in.) mirror for the Du Pont telescope of Las Campanas, Chile. Mask: 200 spots, 2.54-cm (1-in.) diam, 15-cm (6-in.) spacing. (Photograph courtesy of Mitchell C. Ruda.)

Fig. 3
Fig. 3

Schematic showing the position of holes and photographic plate.

Fig. 4
Fig. 4

Hartmann plate image inside the center of curvature. (Photograph courtesy of Mitchell C. Ruda.)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

W ( y ) = Kc 3 y 4 4 c 2 y 2 2 L ,
TA = 1 W c y = Kc 2 y 3 + cyL .
Δ TA = ( 3 Kc 2 Y 2 + cL ) Δ Y .
d i = ( 3 Kc 2 Y 2 + cL ) d h .
θ = ( 3 Kc 3 Y 2 + c 2 L ) d h .
ψ = 1.22 λ d h .
d h = [ 1.63 λ Kc 3 D 2 + 1.33 c 2 L ] 1 / 2 ,
α = c Δ TA 1 cL .
Δ y = 4 α ( 1 cL ) 3 Kc 3 D 2 + 4 c 2 L .
Δ y = 4 α 3 Kc 3 D 2 .
S = D 2 ( N + 0.25 ) .
Sc df L ,
L 1.22 λ d h Sc 2 .
Dp = KcD 2 + cLD .

Metrics