Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hettrick, MCH/EUVE/321/82, U. California (Berkeley, 1982).
  2. S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).
  3. D. E. Aspnes, J. Opt. Soc. Am. 72, 8 (1982).
    [CrossRef]
  4. T. Kita, T. Harada, N. Nakano, H. Kuroda, Appl. Opt. 22, 512 (1983).
    [CrossRef] [PubMed]
  5. T. Harada, T. Kita, Appl. Opt. 19, 3987 (1980).
    [CrossRef] [PubMed]
  6. J. M. Lerner, Proc. Soc. Photo-Opt. Instrum. Eng. 240, 82 (1980).
  7. M. Neviere, D. Maystre, W. R. Hunter, J. Opt. Soc. Am. 681106 (1978).
    [CrossRef]
  8. R. C. Chase, A. S. Krieger, J. H. Underwood, Appl. Opt. 21, 4446 (1982).
    [CrossRef] [PubMed]
  9. Final Report of the Science Working Group for the Far Ultraviolet Spectroscopic Explorer, NASA headquarters publication (Apr.1983).
  10. G. W. Clark, Phys. Today 35, No. 11, 26 (1982).
    [CrossRef]

1983 (1)

1982 (3)

R. C. Chase, A. S. Krieger, J. H. Underwood, Appl. Opt. 21, 4446 (1982).
[CrossRef] [PubMed]

D. E. Aspnes, J. Opt. Soc. Am. 72, 8 (1982).
[CrossRef]

G. W. Clark, Phys. Today 35, No. 11, 26 (1982).
[CrossRef]

1981 (1)

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

1980 (2)

T. Harada, T. Kita, Appl. Opt. 19, 3987 (1980).
[CrossRef] [PubMed]

J. M. Lerner, Proc. Soc. Photo-Opt. Instrum. Eng. 240, 82 (1980).

1978 (1)

Aspnes, D. E.

D. E. Aspnes, J. Opt. Soc. Am. 72, 8 (1982).
[CrossRef]

Bowyer, S.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Chase, R. C.

Clark, G. W.

G. W. Clark, Phys. Today 35, No. 11, 26 (1982).
[CrossRef]

Finley, D.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Harada, T.

Hettrick, M. C.

M. C. Hettrick, MCH/EUVE/321/82, U. California (Berkeley, 1982).

Hunter, W. R.

Kita, T.

Krieger, A. S.

Kuroda, H.

Lampton, M.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Lerner, J. M.

J. M. Lerner, Proc. Soc. Photo-Opt. Instrum. Eng. 240, 82 (1980).

Malina, R.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Maystre, D.

Nakano, N.

Neviere, M.

Paresce, F.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Penegor, G.

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Underwood, J. H.

Appl. Opt. (3)

J. Opt. Soc. Am. (2)

Phys. Today (1)

G. W. Clark, Phys. Today 35, No. 11, 26 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. M. Lerner, Proc. Soc. Photo-Opt. Instrum. Eng. 240, 82 (1980).

S. Bowyer, R. Malina, M. Lampton, D. Finley, F. Paresce, G. Penegor, Proc. Soc. Photo-Opt. Instrum. Eng. 279, 176 (1981).

Other (2)

M. C. Hettrick, MCH/EUVE/321/82, U. California (Berkeley, 1982).

Final Report of the Science Working Group for the Far Ultraviolet Spectroscopic Explorer, NASA headquarters publication (Apr.1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of variable line-space plane grating spectrometer. Collecting mirror is upstream of the converging beam: (a) projection upon the dispersion plane; (b) grating plane having variably spaced straight grooves; (c) variably spaced curved grooves, provided by holographic fabrication.

Fig. 2
Fig. 2

Ray trace of variable line-space grating illustrated in Fig. 1(b), with straight grooves and a flat detector. System parameters are those given in the text. A resolving power of 700–1100 is achieved simultaneously from 100 to 1000 Å. Lowest spot diagrams show only the grating aberrations.

Fig. 3
Fig. 3

Oriental fan grating in conical diffraction. Grooves are spaced equally per polar angle about a vertical line through the ruling focus, located behind the focal plane: (a) perspective drawing showing the diffraction cones and the blazed groove profiles; (b) five ray traces showing the effect of various displacements of the ruling focus (ΔRF). Bottom ray trace shows the improvement obtained by tilting the detector. System parameters are those given in text. Only the grating aberrations are shown.

Fig. 4
Fig. 4

Two-element echelle spectrometer consisting of two variable line-space gratings. First grating is mounted in-plane and has concentric circularly ruled grooves. Second grating is mounted in conical diffraction with radially ruled grooves from a ruling focus.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d ( x ) = m λ 0 / [ cos β ( x ) cos α ( x ) ] ,
Δ = ( m λ 0 / d 0 ) [ ½ x y 2 + ¾ x 2 y 2 ( cos β 0 + cos α 0 ) x y 4 + ] ,
[ Δ λ ] dispersive = 5 × 10 6 ( d λ / d s ) F ( sin α / sin β ) ,
λ max / λ min 1 + c × 10 5 ( λ / Δ λ ) 2 ( F / L 0 ) 1 ( α max α min ) 1 ,
( Δ R F ) opt L 0 sin 2 γ 0 cos γ 0 ,
Δ = ( m λ 0 / d 0 ) [ ½ x 2 y γ 0 2 + y 3 + ] / cos 2 γ 0 ,

Metrics