Abstract

A fiber circular polarizer, composed of a metal-coated fiber polarizer and a λ/4 platelet fabricated on a birefringent fiber, has been demonstrated. The λ/4 platelet was made by cutting a birefringent fiber to an appropriate length. The device structure was designed by stress analysis simulation using a finite element method to set the angle θ = π/4 between the fiber polarizer axis and the birefringent fiber major axis. The 17.6-dB maximum extinction ratio was obtained when the left- and right-circularly polarized light was launched into the device. It is assumed that such a fiber circular polarizer will operate as a quasi-isolator, because the light reflected from the output, the main factor backing the light source, is eliminated.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ozeki, B. S. Kawasaki, Electron. Lett. 12, 151 (1976).
    [CrossRef]
  2. G. B. Hocker, Opt. Lett. 1, 124 (1977).
    [CrossRef] [PubMed]
  3. E. G. Rawson, A. B. Nafarrate, Electron. Lett. 14, 274 (1978).
    [CrossRef]
  4. W. Eickhoff, Electron. Lett. 16, 762 (1980).
    [CrossRef]
  5. R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [CrossRef] [PubMed]
  6. T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
    [CrossRef]
  7. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  8. R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
    [CrossRef]
  9. G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
    [CrossRef]
  10. T. Okoshi, IEEE J. Quantum Electron. QE-17, 879 (1981).
    [CrossRef]
  11. D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
    [CrossRef]
  12. W. A. Shurcliff, Electron. Des. 4 (1Apr.1956).
  13. E. G. Rawson, R. G. Murray, IEEE J. Quantum Electron. QE-9, 1114 (1973).
    [CrossRef]
  14. V. Ramaswamy, R. H. Stolen, M. D. Divino, W. Pleibel, Appl. Opt. 18, 4080 (1979).
    [CrossRef] [PubMed]
  15. T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
    [CrossRef]
  16. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
    [CrossRef]
  17. K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
    [CrossRef]
  18. S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).
  19. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  20. H. Bach, Commun. ACM 12, 675 (1969).
    [CrossRef]
  21. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), Sec. 6g.

1982 (3)

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

1981 (4)

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

T. Okoshi, IEEE J. Quantum Electron. QE-17, 879 (1981).
[CrossRef]

1980 (3)

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
[CrossRef] [PubMed]

1979 (2)

1978 (1)

E. G. Rawson, A. B. Nafarrate, Electron. Lett. 14, 274 (1978).
[CrossRef]

1977 (1)

1976 (1)

T. Ozeki, B. S. Kawasaki, Electron. Lett. 12, 151 (1976).
[CrossRef]

1973 (1)

E. G. Rawson, R. G. Murray, IEEE J. Quantum Electron. QE-9, 1114 (1973).
[CrossRef]

1969 (2)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

H. Bach, Commun. ACM 12, 675 (1969).
[CrossRef]

1956 (1)

W. A. Shurcliff, Electron. Des. 4 (1Apr.1956).

Bach, H.

H. Bach, Commun. ACM 12, 675 (1969).
[CrossRef]

Barlow, A. J.

D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Bergh, R. A.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
[CrossRef] [PubMed]

Chynoweth, A. G.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

Divino, M. D.

Douklias, N.

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Eickhoff, W.

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

Element, K.

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

Giallorenzi, T. G.

Hansen, J. J. R.

D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Hocker, G. B.

Hosaka, T.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Kawasaki, B. S.

T. Ozeki, B. S. Kawasaki, Electron. Lett. 12, 151 (1976).
[CrossRef]

Kotler, G.

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Lefevre, H. C.

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Matsumura, H.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Miller, S. E.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Murray, R. G.

E. G. Rawson, R. G. Murray, IEEE J. Quantum Electron. QE-9, 1114 (1973).
[CrossRef]

Nafarrate, A. B.

E. G. Rawson, A. B. Nafarrate, Electron. Lett. 14, 274 (1978).
[CrossRef]

Noda, J.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Okoshi, T.

T. Okoshi, IEEE J. Quantum Electron. QE-17, 879 (1981).
[CrossRef]

Ozeki, T.

T. Ozeki, B. S. Kawasaki, Electron. Lett. 12, 151 (1976).
[CrossRef]

Payne, D. N.

D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

Pleibel, W.

Ramaswamy, V.

Rawson, E. G.

E. G. Rawson, A. B. Nafarrate, Electron. Lett. 14, 274 (1978).
[CrossRef]

E. G. Rawson, R. G. Murray, IEEE J. Quantum Electron. QE-9, 1114 (1973).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Schiffner, G.

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

Schöner, G.

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

Shaw, H. J.

R. A. Bergh, H. C. Lefevre, H. J. Shaw, Opt. Lett. 5, 479 (1980).
[CrossRef] [PubMed]

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Sheem, S. K.

Shurcliff, W. A.

W. A. Shurcliff, Electron. Des. 4 (1Apr.1956).

Stolen, R. H.

Suganuma, T.

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Commun. ACM (1)

H. Bach, Commun. ACM 12, 675 (1969).
[CrossRef]

Electron. Des. (1)

W. A. Shurcliff, Electron. Des. 4 (1Apr.1956).

Electron. Lett. (7)

T. Ozeki, B. S. Kawasaki, Electron. Lett. 12, 151 (1976).
[CrossRef]

E. G. Rawson, A. B. Nafarrate, Electron. Lett. 14, 274 (1978).
[CrossRef]

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

R. A. Bergh, G. Kotler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

G. Schöner, K. Element, G. Schiffner, N. Douklias, Electron. Lett. 18, 566 (1982).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

IEEE J. Quantum Electron. (5)

K. Okamoto, T. Hosaka, T. Edahiro, IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

T. Okoshi, IEEE J. Quantum Electron. QE-17, 879 (1981).
[CrossRef]

D. N. Payne, A. J. Barlow, J. J. R. Hansen, IEEE J. Quantum Electron. QE-18, 477 (1982).
[CrossRef]

E. G. Rawson, R. G. Murray, IEEE J. Quantum Electron. QE-9, 1114 (1973).
[CrossRef]

T. Hosaka, K. Okamoto, J. Noda, IEEE J. Quantum Electron. QE-18, 1569 (1982).
[CrossRef]

Opt. Lett. (3)

Other (2)

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), Sec. 6g.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Fiber circular polarizer diagram.

Fig. 2
Fig. 2

Birefringent fiber cross-section view.

Fig. 3
Fig. 3

Major axis direction vs structural angle of the birefringent fibers.

Fig. 4
Fig. 4

Relation between modal birefringence and B2O3 concentration in the stress-inducing part.

Fig. 5
Fig. 5

Two-dimensional fiber polarizer model with dielectric buffer layer.

Fig. 6
Fig. 6

Attenuation constants of the fundamental modes vs buffer layer thickness (varying a).

Fig. 7
Fig. 7

Attenuation constants of the fundamental modes vs buffer layer thickness (varying Δ).

Fig. 8
Fig. 8

Attenuation constants of the fundamental modes vs buffer layer thickness (b = 2a).

Fig. 9
Fig. 9

Attenuation constants of the fundamental modes vs buffer layer thickness (a = 2b).

Fig. 10
Fig. 10

Attenuation constants of the fundamental modes vs buffer layer thickness (varying metal kind).

Fig. 11
Fig. 11

Attenuation constants of the fundamental modes vs buffer layer thickness (varying Δ′).

Fig. 12
Fig. 12

Photomicrograph showing birefringent fiber cross section etched with 49% HF: (a) etching time = 0; (b) etching time = 16 min; (c) etching time = 20 min.

Fig. 13
Fig. 13

Behavior of the degree of polarization with decreasing fiber output length.

Fig. 14
Fig. 14

Experimental setup for measuring polarization characteristics: 1, He–Ne laser (λ = 1.52 μm); 2 and 4, polarizer; 3 and 5, λ/4 platelet; 6, microscope objective; 7, fiber circular polarizer; 8, Ge detector.

Fig. 15
Fig. 15

Power ratio for left- and right-circularly polarized light put into the device while decreasing the input end.

Fig. 16
Fig. 16

Theoretical power ratio for left- and right-circularly polarized light vs normalized deviation from optimum length.

Fig. 17
Fig. 17

Schematic diagram of a quasi-isolator.

Fig. 18
Fig. 18

Polarization angle incident to the birefringent fiber vs quasi-isolation.

Fig. 19
Fig. 19

Normalized deviation from optimum birefringent fiber length vs quasi-isolation.

Fig. 20
Fig. 20

Elliptically polarized light.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

( E x 0 = E 0 exp ( j w t ) , E y 0 = E 0 exp [ j ( w t π 2 ) ] .
P out | E | 2 = E 0 2 { [ 1 sin 2 θ sin ( Δ β l ) ] + [ 1 ± sin 2 θ sin ( Δ β l ) ] × 10 | ρ | / 10 } ,
Δ β l = Δ β ( L 0 4 + Δ l ) = 2 π L 0 ( L 0 4 + Δ l ) = π 2 + 2 π Δ l L 0 .
R 0 = 10 | log 10 { [ 1 + sin 2 θ cos ( 2 π Δ l / L 0 ) ] + [ 1 sin 2 θ cos ( 2 π Δ l / L 0 ) ] × 10 | ρ | / 10 [ 1 sin 2 θ cos ( 2 π Δ l / L 0 ) ] + [ 1 + sin 2 θ cos ( 2 π Δ l / L 0 ) ] × 10 | ρ | / 10 } | ,
H x ν = exp ( j w t j k z z ) { A 1 cos ( k x x + ξ ) cos ( k y y + η ) for ν = 1 , A 2 cos ( k x x + ξ ) cos ( k y y + η ) for ν = 2 , A 3 exp ( γ 3 x ) cos ( k y y + η ) for ν = 3 , A 4 cos ( k x x + ξ ) exp ( γ 4 y ) for ν = 4 , A 5 exp ( γ 5 x ) cos ( k y y + η ) for ν = 5 , A 6 cos ( k x x + ξ ) exp ( γ 6 y ) for ν = 6 ,
E x ν = 1 ω ε ν k z 2 H x ν x y ,
E y ν = ω μ 0 k z H x ν 1 ω ε ν k z 2 H x ν y 2 ,
E z ν = 1 j ω ε ν H x ν y ,
H y ν = 0 ,
H z ν = 1 j k z H x ν x , ( 10 )
2 k x a = tan 1 [ n 3 2 γ 3 n 1 2 k x ( k 0 2 n 1 2 k y 2 k 0 2 n 3 2 k y 2 ) ] + tan 1 [ n 5 2 γ 5 n 1 2 k x ( k 0 2 n 1 2 k y 2 k 0 2 n 5 2 k y 2 ) ] + p π .
2 k y b = tan 1 ( n 1 2 γ 4 n 4 2 k y ) + tan 1 { n 1 2 k y n 2 2 k y tan [ tan 1 ( n 2 2 γ 6 n 6 2 k y ) k y d ] } + q π ,
2 H x ν = k 0 2 n ν 2 H x ν .
k y = [ k y 2 + k 0 2 ( n 2 2 n 1 2 ) ] 1 / 2 ,
γ 3 = [ k x 2 + k 0 2 ( n 1 2 n 3 2 ) ] 1 / 2 ,
γ 4 = [ k y 2 + k 0 2 ( n 1 2 n 4 2 ) ] 1 / 2 ,
γ 5 = [ k x 2 + k 0 2 ( n 1 2 n 5 2 ) ] 1 / 2 ,
γ 6 = [ k y 2 + k 0 2 ( n 1 2 n 6 2 ) ] 1 / 2 ,
2 k x a = tan 1 [ γ 3 ( k 0 2 n 1 2 k y 2 ) k x ( k 0 2 n 3 2 k y 2 ) ] + tan 1 [ γ 5 ( k 0 2 n 1 2 k y 2 ) k x ( k 0 2 n 5 2 k y 2 ) ] + p π ,
2 k y b = tan 1 ( γ 4 k y ) + tan 1 { k y k y tan [ tan 1 ( γ 6 k y ) k y d ] } + q π .
P = ( I max I min ) / ( I max + I min ) ,
E x i = E 0 cos θ exp ( j ω t ) ,
E y i = E 0 sin θ exp ( j ω t ) ,
E x r = ( n 1 n 2 n 1 + n 2 ) E 0 cos θ exp [ j ( ω t 2 β x l ) ] ,
E y r = ( n 1 n 2 n 1 + n 2 ) E 0 sin θ exp [ j ( ω t 2 β y l ) ] ,
( E x r a 0 ) 2 + ( E y r b 0 ) 2 2 E x r E y r a 0 b 0 cos δ = sin 2 δ ,
a 0 = ( n 1 n 2 n 1 + n 2 ) E 0 cos θ ,
b 0 = ( n 1 n 2 n 1 + n 2 ) E 0 sin θ ,
δ = 2 ( β y β x ) l = 2 Δ β l .
P r | E | 2 = ( n 1 n 2 n 1 + n 2 ) 2 E 0 2 [ ( cos 4 θ + 3 ) + ( 1 cos 4 θ ) cos δ 4 + ( 1 cos 4 θ ) ( 1 cos δ ) × 10 | ρ | / 10 4 ] ,
QI = | 10 log 10 P r P r o | ,
P r o = ( n 1 n 2 ) 2 ( n 1 + n 2 ) 2 E 0 2 ,
( E x 0 = E 0 exp ( jwt ) = E 0 cos w t , E y 0 = E 0 exp [ j ( w t π 2 ] = E 0 cos ( w t π 2 ) ,
( E x = E 0 cos ( w t β x l ) , E y = E 0 cos ( w t π 2 β y l ) .
( E x E 0 ) 2 + ( E y E 0 ) 2 2 E x E y E 0 2 cos δ = sin 2 δ ,
δ = ( β y β x ) l + π / 2 = Δ β l + π / 2 .
( E x = E x cos θ E y sin θ , E y = E x sin θ + E y cos θ .
( 1 sin 2 θ cos δ E 0 2 ) E x 2 + ( 1 + sin 2 θ cos δ E 0 2 ) E y 2 ( 2 cos 2 θ cos δ E 0 2 ) E x E y = sin 2 δ .
P out X 0 2 + Y 0 2 × 10 | ρ | / 10 .
P out E 0 2 [ ( 1 + sin 2 θ cos δ ) + ( 1 sin 2 θ cos δ ) × 10 | ρ | / 10 ] = E 0 2 { [ 1 sin 2 θ sin ( Δ β l ) ] + [ 1 + sin 2 θ sin ( Δ β l ) ] × 10 | ρ | / 10 } .

Metrics