Abstract

Serial transmission of image data through an optical fiber is inefficient in the utilization of the channel capacity of the fiber. Parallel image transmission techniques, on the other hand, generally limit the transmission length to a few meters. A novel approach is introduced with which 2-D image data can be transmitted efficiently at high speed over a single optical fiber using wavelength–time multiplexing. Several system configurations designed for different types of input are presented.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Friesem, U. Levy, Opt. Lett. 2, 133 (1978).
    [CrossRef] [PubMed]
  2. A. A. Friesem, U. Levy, in Proceedings, International Conference on Lasers 79 (STS, McLean, Va., 1980), p. 425.
  3. J. D. Armitage et al., Jpn. J. Appl. Phys. 4, 273 (1965).
  4. H. O. Bartelt, Opt. Commun. 27, 365 (1978).
    [CrossRef]
  5. H. O. Bartelt, Opt. Commun. 28, 45 (1979).
    [CrossRef]
  6. B. Adams, S. K. Case, Appl. Opt. 22, 2026 (1983).
    [CrossRef] [PubMed]
  7. D. E. Husley, S. K. Case, Appl. Opt. 22, 2029 (1983).
    [CrossRef]
  8. A. A. Friesem, U. Levy, Y. Silberberg, Proc. IEEE 77, 208 (1983).
    [CrossRef]
  9. A. M. Tai, A. A. Friesem, Opt. Lett. 8, 57 (1983).
    [CrossRef] [PubMed]
  10. D. B. Keck, R. E. Love, in Applied Optics and Optical Engineering, Vol. 6, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980), Chap. 11.
    [CrossRef]

1983 (4)

1979 (1)

H. O. Bartelt, Opt. Commun. 28, 45 (1979).
[CrossRef]

1978 (2)

1965 (1)

J. D. Armitage et al., Jpn. J. Appl. Phys. 4, 273 (1965).

Adams, B.

Armitage, J. D.

J. D. Armitage et al., Jpn. J. Appl. Phys. 4, 273 (1965).

Bartelt, H. O.

H. O. Bartelt, Opt. Commun. 28, 45 (1979).
[CrossRef]

H. O. Bartelt, Opt. Commun. 27, 365 (1978).
[CrossRef]

Case, S. K.

Friesem, A. A.

A. M. Tai, A. A. Friesem, Opt. Lett. 8, 57 (1983).
[CrossRef] [PubMed]

A. A. Friesem, U. Levy, Y. Silberberg, Proc. IEEE 77, 208 (1983).
[CrossRef]

A. A. Friesem, U. Levy, Opt. Lett. 2, 133 (1978).
[CrossRef] [PubMed]

A. A. Friesem, U. Levy, in Proceedings, International Conference on Lasers 79 (STS, McLean, Va., 1980), p. 425.

Husley, D. E.

Keck, D. B.

D. B. Keck, R. E. Love, in Applied Optics and Optical Engineering, Vol. 6, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980), Chap. 11.
[CrossRef]

Levy, U.

A. A. Friesem, U. Levy, Y. Silberberg, Proc. IEEE 77, 208 (1983).
[CrossRef]

A. A. Friesem, U. Levy, Opt. Lett. 2, 133 (1978).
[CrossRef] [PubMed]

A. A. Friesem, U. Levy, in Proceedings, International Conference on Lasers 79 (STS, McLean, Va., 1980), p. 425.

Love, R. E.

D. B. Keck, R. E. Love, in Applied Optics and Optical Engineering, Vol. 6, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980), Chap. 11.
[CrossRef]

Silberberg, Y.

A. A. Friesem, U. Levy, Y. Silberberg, Proc. IEEE 77, 208 (1983).
[CrossRef]

Tai, A. M.

Appl. Opt. (2)

Jpn. J. Appl. Phys. (1)

J. D. Armitage et al., Jpn. J. Appl. Phys. 4, 273 (1965).

Opt. Commun. (2)

H. O. Bartelt, Opt. Commun. 27, 365 (1978).
[CrossRef]

H. O. Bartelt, Opt. Commun. 28, 45 (1979).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

A. A. Friesem, U. Levy, Y. Silberberg, Proc. IEEE 77, 208 (1983).
[CrossRef]

Other (2)

D. B. Keck, R. E. Love, in Applied Optics and Optical Engineering, Vol. 6, R. Kingslake, B. J. Thompson, Eds. (Academic, New York, 1980), Chap. 11.
[CrossRef]

A. A. Friesem, U. Levy, in Proceedings, International Conference on Lasers 79 (STS, McLean, Va., 1980), p. 425.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

System for transmitting images of a transmissive object through a single optical fiber.

Fig. 2
Fig. 2

Diffraction by a blazed grating: (a) geometry of blazed grating; (b) normal incident beam; (c) oblique incident beam.

Fig. 3
Fig. 3

Images of a transmissive object transmitted through a single fiber: (a) image of a transparency transmitted through a fiber with a 600-μm diam core; (b) image of a transparency transmitted through a fiber with a 200-μm diam core.

Fig. 4
Fig. 4

System for transmitting a reflective object using the second-order diffraction to generate the referencing signal.

Fig. 5
Fig. 5

Synchronization of the scanners at the transmitting and receiving ends: (a) oscilloscope traces of the position output of the scanner at the transmitting end and the output of the photodetector at the receiving end; (b) oscilloscope traces of the position outputs of the scanners at the transmitting and receiving ends.

Fig. 6
Fig. 6

Image of a diffuse 3-D object transmitted through a fiber with a 600-μm diam core.

Fig. 7
Fig. 7

Transmitting images of a reflective object through a single fiber with the illuminating source at the receiving end.

Fig. 8
Fig. 8

Images of self-emissive and passively illuminated objects transmitted through a single fiber: (a) the coil filament of an incandescent lamp; (b) a human hand illuminated with a 40-W incandescent light bulb.

Fig. 9
Fig. 9

System for transmitting images of self-emissive or passively illuminated object using a SLM to create a secondary image.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

θ 0 = sin 1 ( g λ sin θ i ) ,
d θ 0 d λ = g [ 1 ( g λ sin θ i ) 2 ] 1 / 2 .
d θ 0 d λ = g [ 1 ( g λ ) 2 ] 1 / 2 = 2.65 × 10 6 rad / m ,
d θ 0 d λ = g { 1 [ g λ sin ( 56 ° ) ] 2 } 1 / 2 = 1.5 × 10 6 rad / m .
Δ θ = sin 1 ( g λ 2 ) sin 1 ( g λ 1 ) .
N = 2 f tan ( Δ θ / 2 ) / D ,
N . A . = n core n air cos [ sin 1 ( n cladding n core ) ] = ( n core 2 n cladding 2 ) 1 / 2 / n air .
E 1 N 2 T D 2 T ,
R = N 2 T T D 2 .
E ( 1 / R ) .

Metrics