Abstract

The reflection properties of splices, such as fusion splices and V-groove splices, in graded-index multimode optical fibers were investigated theoretically and experimentally. Equations have been derived for calculating reflection in fusion splices and V-groove splices. Several reflection characteristics in splices were measured using a time-domain reflectometer. The measured results are discussed using the deived equations.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
    [CrossRef]
  2. I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-15, 844 (1979).
    [CrossRef]
  3. F. L. Thiel, R. M. Hawk, Appl. Opt. 15, 2785 (1976).
    [CrossRef] [PubMed]
  4. N. Kashima, Appl. Opt. 20, 3859 (1981).
    [CrossRef] [PubMed]
  5. N. Kashima, F. Nihei, Trans. IECE Jpn. E64, 529 (1981).
  6. Similar effects have been reported and analyzed for a connector;R. E. Wagner, C. R. Sandahl, Appl. Opt. 21, 1381 (1982).
    [CrossRef] [PubMed]

1982 (1)

1981 (2)

N. Kashima, Appl. Opt. 20, 3859 (1981).
[CrossRef] [PubMed]

N. Kashima, F. Nihei, Trans. IECE Jpn. E64, 529 (1981).

1979 (1)

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-15, 844 (1979).
[CrossRef]

1978 (1)

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
[CrossRef]

1976 (1)

Hawk, R. M.

Ikushima, I.

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-15, 844 (1979).
[CrossRef]

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
[CrossRef]

Kashima, N.

N. Kashima, Appl. Opt. 20, 3859 (1981).
[CrossRef] [PubMed]

N. Kashima, F. Nihei, Trans. IECE Jpn. E64, 529 (1981).

Maeda, M.

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-15, 844 (1979).
[CrossRef]

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
[CrossRef]

Nihei, F.

N. Kashima, F. Nihei, Trans. IECE Jpn. E64, 529 (1981).

Sandahl, C. R.

Thiel, F. L.

Wagner, R. E.

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
[CrossRef]

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-15, 844 (1979).
[CrossRef]

Trans. IECE Jpn. (1)

N. Kashima, F. Nihei, Trans. IECE Jpn. E64, 529 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Model of splice used for lateral displacement analysis.

Fig. 2
Fig. 2

Mode power distribution and reflection coefficient as a function of distance.

Fig. 3
Fig. 3

Relation between splice loss and reflection for lateral displacement.

Fig. 4
Fig. 4

Relation between splice loss, reflection, and core diameter for different fiber parameters.

Fig. 5
Fig. 5

Relation between splice loss, reflection, and refractive-index difference for different fiber parameters.

Fig. 6
Fig. 6

Relation between splice loss and reflection.

Fig. 7
Fig. 7

Model of V-groove splice with matching material.

Fig. 8
Fig. 8

Relation between reflection and refractive index nυ of matching material.

Fig. 9
Fig. 9

Experimental reflection and splice loss results with fusion splices.

Fig. 10
Fig. 10

Experimental setup for measuring the relation between reflection and lateral displacement with V-groove splices.

Fig. 11
Fig. 11

Relation between reflection and lateral displacement (experimental results with setup in Fig. 11).

Fig. 12
Fig. 12

Relation between reflection and n; n respresents a number of closely located V-groove splices in cascade.

Fig. 13
Fig. 13

Temperature dependence of reflection in a V-groove at one endface.

Fig. 14
Fig. 14

Mode power distribution and reflection coefficient as a function of distance (approximation from Fig. 2).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R ( x , y ) = | n 1 n 2 n 1 + n 2 | 2 .
n 1 = n 0 [ 1 Δ ( x 2 + y 2 ) / a 2 ] ,
n 2 = n 0 { 1 Δ [ ( x + d ) 2 + y 2 ] / a 2 } .
R ( x , y ) = { Δ 2 | d 2 + 2 x d | 2 4 a 4 Δ 2 | x 2 + y 2 a 2 | 2 4 a 4 ( a < x < a d ) , ( x > a d ) .
P ( x , y ) = p 0 [ 1 ( r / a ) g ] ( o < r < a ) ,
H = s R ( x , y ) P ( x , y ) dxdy s P ( x , y ) dxdy ,
H = Δ 2 π a 6 ( P 1 + P 2 + P 3 ) ;
H = Δ 2 12 [ 1 ( a 1 a 2 ) 2 ] 2 g + 2 g + 6 ,
H = ( Δ 1 Δ 2 ) 2 12 g + 2 g + 6 .
H = 1 2 ( n υ n 1 n 1 ) 2 + 1 3 ( n υ n 1 n 1 ) Δ + Δ 2 12 .
H = Δ 2 π a 6 ( P 1 + P 2 + P 3 ) ,
P 1 = a 2 d 2 60 [ 15 d 2 ( π θ 0 ) + 5 a 2 ( 2 π 2 θ 0 sin 2 θ 0 ) 32 a d sin θ 0 ] , P 2 = d 2 ( a d ) 2 a d d 2 2 { d 2 + 8 3 d ( a d ) + 2 ( a d ) 2 1 a 2 [ 2 ( a d ) 2 + 2 3 d ( 2 a d ) ] [ d 2 4 + 4 5 d ( a d ) + 2 3 ( a d ) 2 ] } , P 3 = 8 15 [ α 1 a 2 [ β + γ 7 ) ] , θ 0 = cos 1 ( a d a ) , α = I ( 0 , 5 , a ) I ( 0 , 5 , a d ) , β = I ( 2 , 5 , a ) I ( 2 , 5 , a d ) , γ = I ( 0 , 7 , a ) I ( 0 , 7 , a d ) , I ( 0 , 5 , x ) = 1 48 [ 8 x ( a 2 x 2 ) 5 / 2 + 10 a 2 x ( a 2 x 2 ) 3 / 2 + 15 a 4 x ( a 2 x 2 ) 1 / 2 + 15 a 6 sin 1 ( x a ) ] , I ( 0 , 7 , x ) = x 8 ( a 2 x 2 ) 7 / 2 + 7 a 2 8 I ( 0 , 5 , x ) , I ( 2 , 5 , x ) = x 3 8 ( a 2 x 2 ) 5 / 2 + 5 a 2 8 I ( 2 , 3 , x ) , I ( 2 , 3 , x ) = 1 48 [ 8 x ( a 2 x 2 ) 5 / 2 + 2 a 2 x ( a 2 x 2 ) 3 / 2 + 3 a 4 x ( a 2 x 2 ) 1 / 2 + 3 a 6 sin 1 ( x a ) ] .
R ( x , y ) = Δ 2 d 2 8 a 4 ( 2 d / a ) 2 ( x 2 + y 2 ) .
H = Δ 2 s 2 ( 2 s ) 2 16 g + 2 g + 6 ,

Metrics