Abstract

The effect of atmospheric scattering on ocean color measurements from space is considered. It is shown that modeling of the atmospheric effects can be improved by taking into account not only the direct but also the diffuse component of atmospheric transmittance and by a more precise formulation of the interaction between molecular and aerosol scattering in the calculation of atmospheric reflectance. This method, necessitating two near-infrared channels, should be used in future ocean color experiments to better correct for variable aerosol reflectance. The relative accuracy of the aerosol reflectance correction would then be to within 5%, as opposed to the more than 10% obtained with previous modelings.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Hovis et al., Science 210, 60 (1980).
    [CrossRef] [PubMed]
  2. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
    [CrossRef] [PubMed]
  3. H. R. Gordon, D. K. Clark, Boundary Layer Meteorol. 18, 299 (1980).
    [CrossRef]
  4. H. R. Gordon, Appl. Opt. 17, 1631 (1978).
    [CrossRef] [PubMed]
  5. M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
    [CrossRef]
  6. H. R. Gordon, Appl. Opt. 20, 207 (1981).
    [CrossRef] [PubMed]
  7. M. Viollier, Appl. Opt. 21, 1142 (1982).
    [CrossRef] [PubMed]
  8. A meeting of experts during the IURCM colloquium on “Passive Radiometry of the Ocean,” Sidney, B.C., June1978,suggested additional channels at 745, 880,1060 nm and 2.2 μm for an improved atmospheric and sun glitter corrections, see A. Y. Morel, H. R. Gordon, Boundary Layer Meteorol. 18, 343 (1980).
    [CrossRef]
  9. S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).
  10. D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, Appl. Opt. 18, 3587 (1979).
    [CrossRef] [PubMed]
  11. H. R. Gordon, D. K. Clark, Appl. Opt. 20, 4175 (1981).
    [CrossRef] [PubMed]
  12. P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
    [CrossRef]
  13. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).
  14. R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere, WMO/IAMAP, 33 pp.;available from AFGL, Hanscom AFB, Mass. 01731.

1983 (1)

P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
[CrossRef]

1982 (1)

1981 (2)

1980 (4)

W. A. Hovis et al., Science 210, 60 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, Boundary Layer Meteorol. 18, 299 (1980).
[CrossRef]

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
[CrossRef]

1979 (1)

1978 (1)

Bolle, H. J.

R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere, WMO/IAMAP, 33 pp.;available from AFGL, Hanscom AFB, Mass. 01731.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

Clark, D. K.

H. R. Gordon, D. K. Clark, Appl. Opt. 20, 4175 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, Boundary Layer Meteorol. 18, 299 (1980).
[CrossRef]

de Leffe, A.

Deschamps, P. Y.

P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
[CrossRef]

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
[CrossRef]

D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, Appl. Opt. 18, 3587 (1979).
[CrossRef] [PubMed]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

Gordon, H. R.

H. R. Gordon, Appl. Opt. 20, 207 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, Appl. Opt. 20, 4175 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, Boundary Layer Meteorol. 18, 299 (1980).
[CrossRef]

H. R. Gordon, Appl. Opt. 17, 1631 (1978).
[CrossRef] [PubMed]

Herman, M.

P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
[CrossRef]

D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, Appl. Opt. 18, 3587 (1979).
[CrossRef] [PubMed]

Hovis, W. A.

W. A. Hovis et al., Science 210, 60 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

Kondratyev, K. Ya.

R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere, WMO/IAMAP, 33 pp.;available from AFGL, Hanscom AFB, Mass. 01731.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere, WMO/IAMAP, 33 pp.;available from AFGL, Hanscom AFB, Mass. 01731.

Mueller, J. L.

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

Tanre, D.

P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
[CrossRef]

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
[CrossRef]

D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, Appl. Opt. 18, 3587 (1979).
[CrossRef] [PubMed]

Viollier, M.

M. Viollier, Appl. Opt. 21, 1142 (1982).
[CrossRef] [PubMed]

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
[CrossRef]

Voltz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

Appl. Opt. (5)

Boundary Layer Meteorol. (2)

H. R. Gordon, D. K. Clark, Boundary Layer Meteorol. 18, 299 (1980).
[CrossRef]

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary Layer Meteorol. 18, 247 (1980).
[CrossRef]

Remote Sensing Environ. (1)

P. Y. Deschamps, M. Herman, D. Tanre, Remote Sensing Environ. 13, 89 (1983).
[CrossRef]

Science (2)

W. A. Hovis et al., Science 210, 60 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, Science 210, 63 (1980).
[CrossRef] [PubMed]

Other (4)

A meeting of experts during the IURCM colloquium on “Passive Radiometry of the Ocean,” Sidney, B.C., June1978,suggested additional channels at 745, 880,1060 nm and 2.2 μm for an improved atmospheric and sun glitter corrections, see A. Y. Morel, H. R. Gordon, Boundary Layer Meteorol. 18, 343 (1980).
[CrossRef]

S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Voltz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Paper 354 (1971).

R. A. McClatchey, H. J. Bolle, K. Ya. Kondratyev, Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere, WMO/IAMAP, 33 pp.;available from AFGL, Hanscom AFB, Mass. 01731.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Coupling term C R , P ( θ 0 , θ , φ ) = ρ a ρ a R ρ a P at 450 nm, θ = 0, as a function of the solar zenith angle θ0 for three aerosol contents corresponding to a ground visibility V of 23, 15, and 5 km.

Fig. 2
Fig. 2

Same as Fig. 1 at 550 nm.

Fig. 3
Fig. 3

Same as Fig. 1 at 850 nm.

Fig. 4
Fig. 4

Aerosol atmospheric reflectance, ρ a P, at 450 nm for θ0 = 15° and for V(23) as a function of the viewing zenith angle in the solar incidence plane (φ = 0–180°).

Fig. 5
Fig. 5

Same as Fig. 4 for (V5).

Fig. 6
Fig. 6

Empirical relationship between the albedo and the aerosol reflectance for several different aerosol models vs the diffusion angle at λ = 850 and 650 nm.

Tables (7)

Tables Icon

Table I Optical Thicknesses of the Three Scattering Model Atmospheres Calculated from the Aerosol Optical Properties13 a

Tables Icon

Table II Influence of Atmospheric Scattering T1,θ0)/T2,θ0) on the Ratio of Water Leaving Radiances at (λ1 = 450 nm; λ2 = 550 nm) and ( λ 1 = 400 mn; λ2 = 550 nm)

Tables Icon

Table III Diffuse Molecular Transmittance E′R(θ) and Spherical Molecular Albedo S′R for Unit Irradiance with an Angular Dependence 1/μ

Tables Icon

Table IV Computed Atmospheric Reflectances at λ = 450 nm for a Moderate Aerosol Content [(V23) Model]

Tables Icon

Table V Same as Table IV but for a High Aerosol Content [(V5) Model]

Tables Icon

Table VI Same as Table IV but at λ = 400 nm

Tables Icon

Table VII Relative Accuracy ε ( ρ a ) / ρ a P of the Modeling of the Atmospheric Reflectance by Eqs. (4) and (12)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ρ ( θ 0 , θ , φ ) = ρ a ( θ 0 , θ , φ ) + ρ w T ( θ 0 ) T ( θ ) 1 ρ w s ,
ρ ( θ 0 , θ , φ ) ρ a ( θ 0 , θ , φ ) + ρ w T ( θ 0 ) T ( θ ) .
L ( θ 0 , θ , φ ) = L a ( θ 0 , θ , φ ) + L w T ( θ ) ,
ρ a ( θ 0 , θ , φ ) = ρ a R ( θ 0 , θ , φ ) + ρ a P ( θ 0 , θ , φ ) ,
ρ a P ( θ 0 , θ , φ ) τ P ,
τ P λ n ,
C R , P ( θ 0 , θ , φ ) = ρ a ( θ 0 , θ , φ ) ρ a R ( θ 0 , θ , φ ) ρ a P ( θ 0 , θ , φ ) ,
ρ a ( θ 0 , θ , φ ) = ρ a R ( θ 0 , θ , φ ) + ρ a P ( θ 0 , θ , φ ) T R ( θ 0 ) T R ( θ ) 1 ρ a P ( θ 0 , θ , φ ) S R ,
T R ( θ ) = exp ( τ R / cos θ ) + E R ( θ ) ,
ρ a R ( θ 0 , θ , φ ) 1 / μ ,
diffuse transmittance E R ( θ ) , total transmittance T R ( θ ) = 1 2 exp ( τ R / μ ) μ + E R ( θ ) , spherical albedo S R .
ρ a ( θ 0 , θ , φ ) = ρ a R ( θ 0 , θ , φ ) + exp ( τ R / cos θ 0 ) ρ a P ( θ 0 , θ , φ ) × exp ( τ R / cos θ ) + exp ( τ R / cos θ 0 ) A P ( θ 0 ) E R ( θ ) + E R ( θ 0 ) S P T R ( θ ) + T R ( θ 0 ) S R ( S P ) 2 1 S R S P T R ( θ ) .
ρ a ( θ 0 , θ , φ ) = ρ a R ( θ 0 , θ , φ ) + C 1 R ρ a R ( θ 0 , θ , φ ) + C 2 R A P ( θ 0 ) + C 3 R S P ,
exp [ τ R ( 1 μ + 1 μ 0 ) ]
ε [ ρ a P ( λ ) ] ρ a P ( λ ) = ( λ 0 λ ) ε ( n ) 1 ,
n = log [ ρ a P ( λ 0 ) / ρ a P ( λ 0 ) ] log ( λ 0 / λ 0 ) .
ρ a P τ P P P ( θ ) 4 μ s μ ,
S P = 2 b P τ P ,
A P ( θ 0 ) = b P τ P μ 0 ;

Metrics