Abstract

The high spectral resolution lidar (HSRL) measures optical properties of atmospheric aerosols by interferometrically separating the elastic aerosol backscatter from the Doppler broadened molecular contribution. Calibration and data analysis procedures developed for the HSRL are described. Data obtained during flight evaluation testing of the HSRL system are presented with estimates of uncertainties due to instrument calibration. HSRL measurements of the aerosol scattering cross section are compared with in situ integrating nephelometer measurements.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
    [CrossRef] [PubMed]
  2. J. T. Sroga, “Remote Measurements of Tropospheric Aerosol Scattering Properties by an Airborne High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin (1983).
  3. G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
    [CrossRef]
  4. S. Yip, J. Acoust. Soc. 49, 941 (1971).
    [CrossRef]
  5. S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).
  6. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).
  7. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
    [CrossRef]
  8. G. L. Gregory, S. M. Beck, J. J. Mathis, NASA Tech. Memo. 83107 (1981).
  9. N. R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1981).
  10. E. P. Shettle, R. W. Fenn, AFGL-TR-79-0214, No. 676 (1979).
  11. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  12. J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
    [CrossRef]
  13. B. Nilsson, Appl. Opt. 18, 3457 (1979).
    [CrossRef] [PubMed]
  14. N. C. Ahlquist, R. J. Charlson, Atmos. Environ. 3, 551 (1969).
    [CrossRef]

1983 (1)

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

1980 (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
[CrossRef]

1979 (2)

B. Nilsson, Appl. Opt. 18, 3457 (1979).
[CrossRef] [PubMed]

E. P. Shettle, R. W. Fenn, AFGL-TR-79-0214, No. 676 (1979).

1971 (1)

S. Yip, J. Acoust. Soc. 49, 941 (1971).
[CrossRef]

1969 (1)

N. C. Ahlquist, R. J. Charlson, Atmos. Environ. 3, 551 (1969).
[CrossRef]

1968 (1)

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

1964 (1)

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

1963 (2)

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

Ahlquist, N. C.

N. C. Ahlquist, R. J. Charlson, Atmos. Environ. 3, 551 (1969).
[CrossRef]

Beck, S. M.

G. L. Gregory, S. M. Beck, J. J. Mathis, NASA Tech. Memo. 83107 (1981).

Chabbal, R.

Charlson, R. J.

N. C. Ahlquist, R. J. Charlson, Atmos. Environ. 3, 551 (1969).
[CrossRef]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

DeWolf, J. B.

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Draper, N. R.

N. R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1981).

Eloranta, E. W.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, AFGL-TR-79-0214, No. 676 (1979).

Fiocco, G.

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Gregory, G. L.

G. L. Gregory, S. M. Beck, J. J. Mathis, NASA Tech. Memo. 83107 (1981).

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
[CrossRef]

Mack, J. E.

Marquardt, D. W.

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

Mathis, J. J.

G. L. Gregory, S. M. Beck, J. J. Mathis, NASA Tech. Memo. 83107 (1981).

McNutt, D. P.

Nelkin, M.

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Nilsson, B.

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
[CrossRef]

Roesler, F. L.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, AFGL-TR-79-0214, No. 676 (1979).

Shipley, S. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

Smith, H.

N. R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1981).

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
[CrossRef]

Sroga, J. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

J. T. Sroga, “Remote Measurements of Tropospheric Aerosol Scattering Properties by an Airborne High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin (1983).

Tracy, D. H.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

Trauger, J. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

Weinman, J. A.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

Yip, S.

S. Yip, J. Acoust. Soc. 49, 941 (1971).
[CrossRef]

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

AFGL-TR-79-0214 (1)

E. P. Shettle, R. W. Fenn, AFGL-TR-79-0214, No. 676 (1979).

Appl. Opt. (3)

B. Nilsson, Appl. Opt. 18, 3457 (1979).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, same issue (1983).
[CrossRef] [PubMed]

J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

Atmos. Environ. (1)

N. C. Ahlquist, R. J. Charlson, Atmos. Environ. 3, 551 (1969).
[CrossRef]

J. Acoust. Soc. (1)

S. Yip, J. Acoust. Soc. 49, 941 (1971).
[CrossRef]

J. Appl. Meterorol. (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meterorol. 19, 426 (1980).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
[CrossRef]

Phys. Rev. A (1)

S. Yip, M. Nelkin, Phys. Rev. A 135, 1241 (1964).

Other (4)

J. T. Sroga, “Remote Measurements of Tropospheric Aerosol Scattering Properties by an Airborne High Spectral Resolution Lidar,” Ph.D. Thesis, U. Wisconsin (1983).

G. L. Gregory, S. M. Beck, J. J. Mathis, NASA Tech. Memo. 83107 (1981).

N. R. Draper, H. Smith, Applied Regression Analysis (Wiley, New York, 1981).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measurements of the aerosol and molecular channel bandpass distributions convoluted with the laser spectrum, as measured during the 24 July 1980 evaluation flight. The dashed curves are measurements obtained with diffuse uniform laser illumination of the spectrometer entrance aperture. The solid curves are the least-squares estimates of the model calculations [Eqs. (10a),(10b)].

Fig. 2
Fig. 2

Range dependence of the HSRL calibration coefficients computed from Eqs. (2) and (3). The spectrometer model parameters were obtained from the least-squares regression estimate shown in Fig. 1 and the range dependence of the aperture intensity distribution described in the Appendix. These coefficients include signal reduction at close ranges (<1.5 km) due to incomplete transmitter–receiver overlap. The variations in the calibration coefficients are largest at ranges close to the receiver telescope.

Fig. 3
Fig. 3

Signals SaR2,SmR2 measured by the dual-channel HSRL spectrometer from 1203 to 1220 EDT on 24 July 1980. Aircraft altitude was ∼3.2 km ASL. These signals have had background photon counting rates and afterpulsing effects removed before being corrected for the range squared attenuation. The aerosol cross talk in the molecular channel is clearly evident in the mixed layer.

Fig. 4
Fig. 4

Molecular and aerosol backscatter cross sections without attenuation corrections (solid lines) derived from data in Fig. 3. The range dependent calibration coefficients in Fig. 2 were used in this analysis. The HSRL measurements are normalized to the molecular backscatter cross section computed from the measured density profile [Fig. 4(a), dashed line] at a height of 1.64 km (ASL). The decrease in the measured HSRL molecular backscatter cross section with increasing range from the aircraft is a direct measure of the attenuation in the atmosphere. The attenuation corrected aerosol backscatter cross section profile [Fig. 4(b), dashed line] shows a clear region above a hazy mixed layer. The error bars represent the maximum variation in the aerosol and molecular backscatter cross sections due to uncertainty in the instrumental calibration.

Fig. 5
Fig. 5

Aerosol to molecular backscatter ratio S computed from the data using Eq. (6) of Shipley et al.1 The error bars show the maximum variations in S due to calibration uncertainties estimated at the extremes of the 95% confidence level. The calibration errors are largest where the combination of aerosol scattering and uncertainties in the range dependent coefficients have their greatest contributions.

Fig. 6
Fig. 6

Optical depth profile τ(z) using the data shown in Fig. 4(a). The error bars represent the maximum uncertainty due to the calibration procedure described in the text. The apparent negative extinction at the last data point is due to the statistical noise after filtering and averaging.

Fig. 7
Fig. 7

Intercomparison between HSRL (solid line) and in situ nephelometer measurements (dashed line) of the total aerosol scattering cross section derived from the 24 July 1980 data. The in situ measurements have been corrected for the desiccation caused by heating the inlet air sample using an optical model described by Sroga.2 These in situ measurements (effective λ = 530 nm) have been scaled by a λ−1.8 wavelength dependence for comparison with the HSRL wavelength (467.8 nm). Because of the calibration limitation for this data set, measurements of the backscatter phase function were limited to an average value (0.021 ± 0.003 sr−1) over the data height interval.

Fig. 8
Fig. 8

Schematic of the geometry used for computing the aperture intensity distribution with a lens of focal length f centered in the x-y plane at z = 0, a secondary obstruction (r = rs), and a transmitter baffle (half angle = ϕa). The telescope aperture (r = ra) is located at a position z = za to allow adjustments of the telescope focus. The ray from the object point (xo,yo,zo), which passes through the image point (xi,yi,zi) and a point x,y in the aperture plane (z = za), has an intercept in the lens plane (z = 0) of xt,yt. If the point xt,yt falls inside the usable portion of the telescope, that ray contributes to the aperture intensity distribution.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

S a ( R ) = γ [ C a a ( R ) N a ( R ) + C m a ( R ) N m ( R ) ] + B a ,
S m ( R ) = γ [ C a m ( R ) N a ( R ) + C m m ( R ) N m ( R ) ] + B m ,
C a j ( R , σ * ) = ( σ σ 0 ) T j ( R , σ σ r ) d σ j = a , m ,
C m j ( R , σ * ) = 1 N m d N m ( σ σ 0 ) d σ ( σ σ 0 ) T j ( σ σ σ r ) d σ d σ j = a , m .
1 N m d N m d σ = m ̅ c 2 8 π σ 0 2 k T exp [ m ̅ c 2 8 σ 0 2 k T ( σ σ 0 ) 2 ] ,
T a ( R , σ * ) = A a T p ( R , σ * ) T H R ( R , σ * ) ;
T m ( R , σ * ) = A m T p ( R , σ * ) R H R ( R , σ * ) .
T p ( R , σ * ) = aperture I a ( x , y , R ) [ i = 1 3 a i ( σ * , x , y ) ] dxdy ,
a i ( σ * ) = ( 1 ρ i α i 1 ρ i ) 2 [ 1 + 4 N i 2 π 2 sin 2 ( 2 π n i l i ( σ * σ i ) cos θ i ] 1 ,
cos θ = r r I + f 2 [ ( r 2 + f 2 ) ( r I 2 + f 2 ) ] 1 / 2 ,
T HR ( R , σ * ) = aperture I a ( x , y , R ) a 4 ( σ * , x , y ) d x d y ,
R HR ( R , σ * ) = ( 1 α HR ) aperture I a ( x , y , R ) [ 1 g a 4 ( σ * , x , y ) ] 2 d x d y ,
g = 1 α 4 2 ρ 4 ( 1 α 4 ) ( 1 ρ 4 ) 2 .
T a ( u , σ * ) = T a ( u , σ σ * ) ( σ ) d σ ,
T m ( u , σ * ) = T m ( u , σ σ * ) ( σ ) d σ ,
I P ¯ a ( π , R ̅ ) 4 π = 3 8 π R R + Δ R S ( r ) β m ( r ) d r ω 0 [ Δ τ ( Δ R ) Δ τ m ( Δ R ) ] ,
R ̅
= R R + Δ R β m ( r ) d r .
x t = x i + x x i ( 1 z a / z i ) ; y t = y i + y y i ( 1 z a / z i ) .
x i = x o f t / ( z o f t ) ; ; y i = y o f t / ( z o f t ) ; z i = z o f t / ( z o f t ) ,
I a [ x , y , z a , ζ ( x o , y o , R ) ] dxdy = [ ζ ( x o , y o , R ) dxdy π r e 2 ] d x o d y o for r o 2 ( x t 2 + y t 2 ) r t 2 | tan 1 ( y t / x t ) | > ϕ b = 0 otherwise ,

Metrics