Abstract

A high spectral resolution lidar technique to measure optical scattering properties of atmospheric aerosols is described. Light backscattered by the atmosphere from a narrowband optically pumped oscillator–amplifier dye laser is separated into its Doppler broadened molecular and elastically scattered aerosol components by a two-channel Fabry-Perot polyetalon interferometer. Aerosol optical properties, such as the backscatter ratio, optical depth, extinction cross section, scattering cross section, and the backscatter phase function, are derived from the two-channel measurements.

© 1983 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
    [CrossRef]
  2. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).
  3. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, Vol. 14 (1976), p. 71.
    [CrossRef]
  4. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, 3725 (1983).
    [CrossRef] [PubMed]
  5. O. B. Toon, J. B. Pollack, Am. Sci. 68, 268 (1980).
  6. R. A. Reck, J. R. Hummel, Atmos. Environ. 15, 1727 (1981).
    [CrossRef]
  7. R. Jaenicke, J. Aerosol Sci. 11, 577 (1980).
    [CrossRef]
  8. C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
    [CrossRef]
  9. H. Quenzel, M. Kaestner, Appl. Opt. 19, 1338 (1980).
    [CrossRef] [PubMed]
  10. U.S. Environmental Protection Agency, “Protecting Visibility,” Report to Congress EPA-450/5-79-008 (1979).
  11. M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
    [CrossRef] [PubMed]
  12. P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
    [PubMed]
  13. J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
    [CrossRef]
  14. S. Yip, M. Nelkin, Phys. Rev. 135, A1241 (1964).
    [CrossRef]
  15. T. J. Greytak, G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966).
    [CrossRef]
  16. C. Froehlich, G. E. Shaw, Appl. Opt. 19, 1773 (1980).
    [CrossRef]
  17. J. E. Lawler, W. A. Fitzsimmons, L. W. Anderson, Appl. Opt. 15, 1083 (1976).
    [CrossRef] [PubMed]
  18. W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
    [CrossRef]
  19. S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
    [CrossRef]
  20. J. E. Mack, D. P. McNutt, F. L. Roesler, R. Chabbal, Appl. Opt. 2, 873 (1963).

1983 (1)

1981 (2)

R. A. Reck, J. R. Hummel, Atmos. Environ. 15, 1727 (1981).
[CrossRef]

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

1980 (6)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

C. Froehlich, G. E. Shaw, Appl. Opt. 19, 1773 (1980).
[CrossRef]

R. Jaenicke, J. Aerosol Sci. 11, 577 (1980).
[CrossRef]

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

H. Quenzel, M. Kaestner, Appl. Opt. 19, 1338 (1980).
[CrossRef] [PubMed]

O. B. Toon, J. B. Pollack, Am. Sci. 68, 268 (1980).

1979 (1)

1976 (3)

J. E. Lawler, W. A. Fitzsimmons, L. W. Anderson, Appl. Opt. 15, 1083 (1976).
[CrossRef] [PubMed]

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, Vol. 14 (1976), p. 71.
[CrossRef]

1973 (1)

S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
[CrossRef]

1971 (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

1968 (1)

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

1966 (1)

T. J. Greytak, G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966).
[CrossRef]

1964 (1)

S. Yip, M. Nelkin, Phys. Rev. 135, A1241 (1964).
[CrossRef]

1963 (1)

Anderson, L. W.

J. E. Lawler, W. A. Fitzsimmons, L. W. Anderson, Appl. Opt. 15, 1083 (1976).
[CrossRef] [PubMed]

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

Benedek, G. B.

T. J. Greytak, G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966).
[CrossRef]

Benedetti-Michelangeli, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Chabbal, R.

Chu, W. P.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, Vol. 14 (1976), p. 71.
[CrossRef]

Cubeddu, R.

S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Curry, S. M.

S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
[CrossRef]

DeWolf, J. B.

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Eloranta, E. W.

Fiocco, G.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Fitzsimmons, W. A.

J. E. Lawler, W. A. Fitzsimmons, L. W. Anderson, Appl. Opt. 15, 1083 (1976).
[CrossRef] [PubMed]

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

Froehlich, C.

Grams, G. W.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Greytak, T. J.

T. J. Greytak, G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966).
[CrossRef]

Hamill, P.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Hansch, T. W.

S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Herman, B. M.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Hinton, B.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

Hummel, J. R.

R. A. Reck, J. R. Hummel, Atmos. Environ. 15, 1727 (1981).
[CrossRef]

Jaenicke, R.

R. Jaenicke, J. Aerosol Sci. 11, 577 (1980).
[CrossRef]

Kaestner, M.

Kuhlow, W.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

Lawler, J. E.

Mack, J. E.

Madonna, E.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Maischberger, K.

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Martin, D. W.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

McCormick, M. P.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

McMaster, L. R.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

McNutt, D. P.

Mosher, F. R.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

Nelkin, M.

S. Yip, M. Nelkin, Phys. Rev. 135, A1241 (1964).
[CrossRef]

Norton, C. C.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

Pepin, T. J.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Pollack, J. B.

O. B. Toon, J. B. Pollack, Am. Sci. 68, 268 (1980).

Quenzel, H.

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Reck, R. A.

R. A. Reck, J. R. Hummel, Atmos. Environ. 15, 1727 (1981).
[CrossRef]

Riedhauser, C. E.

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

Roesler, F. L.

Russell, P. B.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, Vol. 14 (1976), p. 71.
[CrossRef]

Santek, D.

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

Shaw, G. E.

Shipley, S. T.

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Sroga, J. T.

Steele, H. M.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Swissler, T. J.

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, Appl. Opt. 18, 3783 (1979).
[PubMed]

Toon, O. B.

O. B. Toon, J. B. Pollack, Am. Sci. 68, 268 (1980).

Vrtilek, J. M.

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

Weinman, J. A.

Yip, S.

S. Yip, M. Nelkin, Phys. Rev. 135, A1241 (1964).
[CrossRef]

Am. Sci. (1)

O. B. Toon, J. B. Pollack, Am. Sci. 68, 268 (1980).

Appl. Opt. (6)

Appl. Phys. (1)

S. M. Curry, R. Cubeddu, T. W. Hansch, Appl. Phys. 1, 153 (1973).
[CrossRef]

Atmos. Environ. (1)

R. A. Reck, J. R. Hummel, Atmos. Environ. 15, 1727 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser, J. M. Vrtilek, IEEE J. Quantum Electron. QE-12, 624 (1976).
[CrossRef]

J. Aerosol Sci. (1)

R. Jaenicke, J. Aerosol Sci. 11, 577 (1980).
[CrossRef]

J. Appl. Meteorol. (2)

C. C. Norton, F. R. Mosher, B. Hinton, D. W. Martin, D. Santek, W. Kuhlow, J. Appl. Meteorol. 19, 633 (1980).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco, J. B. DeWolf, J. Atmos. Sci. 25, 488 (1968).
[CrossRef]

Laser Monitoring of the Atmosphere (1)

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, Vol. 14 (1976), p. 71.
[CrossRef]

Nature London Phys. Sci. (1)

G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, Nature London Phys. Sci. 229, 78 (1971).

Phys. Rev. (1)

S. Yip, M. Nelkin, Phys. Rev. 135, A1241 (1964).
[CrossRef]

Phys. Rev. Lett. (1)

T. J. Greytak, G. B. Benedek, Phys. Rev. Lett. 17, 179 (1966).
[CrossRef]

Science (1)

M. P. McCormick, W. P. Chu, G. W. Grams, P. Hamill, B. M. Herman, L. R. McMaster, T. J. Pepin, P. B. Russell, H. M. Steele, T. J. Swissler, Science 214, 328 (1981).
[CrossRef] [PubMed]

Other (1)

U.S. Environmental Protection Agency, “Protecting Visibility,” Report to Congress EPA-450/5-79-008 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

HSRL system block diagram.

Fig. 2
Fig. 2

Schematic of the HSRL dye laser transmitter. The oscillator and amplifier dye cells are optically pumped by a N2 laser at 337.1 nm. The spectrally narrow oscillator output is controlled by Fabry-Perot etalons placed both inside and outside the laser cavity. Timing of the oscillator radiation at the amplifier dye cell is controlled by a 0.25-m white cell and a corner cube reflector.

Fig. 3
Fig. 3

Schematic of the HSRL dual-channel receiver spectrometer. Background light suppression is achieved with a prefilter consisting of an interference filter F and three Fabry-Perot etalons E1, E2, and E3. When the receiver is tuned to the laser output, light which is scattered by aerosols is primarily passed by the high spectral resolution etalon E4 to PMT A. Light which is scattered by molecules is twice reflected by etalon E4 before detection by PMT M. The order in which the twice reflected light is manipulated by the quad aperture is shown by the expanded view (inset). All receiver etalons are automatically tuned by pressure scanning under computer control.

Fig. 4
Fig. 4

Block diagram of the HSRL data acquisition system. The capability is provided for both dual-channel analog and pulse counting detection of the aerosol and molecular channel signals. Background signal information is simultaneously acquired during the periods between HSRL laser firings. A minicomputer is included for real time analysis and display of HSRL information and for automatic control and calibration of the receiver spectrometer.

Fig. 5
Fig. 5

Probability of detecting afterpulse photons in 200-nsec time intervals after an initial photon has been detected by the RCA C31024 photomultiplier.

Fig. 6
Fig. 6

Response of the HSRL data system to an 8-μsec square wave input. The accumulative effects of the photomultiplier afterpulsing on the input square wave signal is shown as the solid line. The dashed curve is the afterpulse corrected signal using the distribution shown in Fig. 5. The procedure for removing the afterpulsing effects is described in the text.

Fig. 7
Fig. 7

Spectrum of the light which is backscattered by the atmosphere as a function of laser–receiver detuning near 467.8 nm in daylight conditions. These signals were acquired during a laser spectral scan across the receiver aerosol channel passband. The signals were integrated over a vertical interval of 600 m centered at 0.9-km AGL (above ground level). Signal departures from the smooth shape expected for theoretical spectra are due to variations in atmospheric backscattering and total optical depth during the spectral scan time period ≈130 sec. The width of the molecular signal spectrum is consistent with the atmospheric temperature at 1-km AGL to within ±10 K.

Tables (2)

Tables Icon

Table I HSRL Transmitter Parameters

Tables Icon

Table II HSRL Receiver Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d n m d υ = n m m ¯ 2 π k T exp ( m ¯ υ 2 2 k T ) ,
d υ d σ = c 2 σ 0 ,
1 N m d N m ( σ ) d σ = m ¯ c 2 8 π σ 0 2 k T exp [ m ¯ c 2 8 σ 0 2 k T ( σ σ 0 ) 2 ] ,
S a ( R ) = γ [ C a a ( R ) N a ( R ) + C m a ( R ) N m ( R ) ] + B a ;
S m ( R ) = γ [ C a m ( R ) N a ( R ) + C m m ( R ) N m ( R ) ] + B m ;
N a ( R ) = λ 0 E 0 A r δ t 2 h β a ( R ) R 2 I P a ( π , R ) 4 π exp [ 2 0 R β ( r ) d r ] ,
N m ( R ) = λ 0 E 0 A r δ t 2 h β m ( R ) R 2 I P m ( π ) 4 π exp [ 2 0 R β ( r ) d r ] ,
N a ( R ) = { C m m ( R ) [ S a ( R ) B a ] C m a ( R ) [ S m ( R ) B m ] } δ ( R ) 1 ,
N m ( R ) = { C a a ( R ) [ S m ( R ) B m ] C a m ( R ) [ S a ( R ) B a ] } δ ( R ) 1 ,
δ ( R ) = C a a ( R ) C m m ( R ) C m a ( R ) C a m ( R ) .
S ( R ) = N a ( R ) N m ( R ) = β a ( R ) I P a ( π , R ) β m ( R ) I P m ( π ) .
β a ( R ) I P a ( π , R ) 4 π = S ( R ) β m ( R ) 3 8 π ,
τ ( R 2 ) τ ( R 1 ) = R 1 R 2 β ( R ) d R = ½ ln [ β m ( R 2 ) β m ( R 1 ) R 1 2 N m ( R 1 ) R 2 2 N m ( R 2 ) ] .
β ( R ) ¯ = τ ( R ) R τ ( R 2 ) τ ( R 1 ) R 2 R 1 .
I P a ( π , R ) ¯ 4 π = S ( R ) β m ( R ) ¯ 3 / 8 π ω 0 [ β ( R ) ¯ β m ( R ) ¯ ] .
β a ( R ) = S ( R ) β m ( R ) 3 / 8 π I P a ( π , R ) / 4 π .
S i ( t ) B i = S i ( t ) B i + 0 t δ t [ S i ( t ) B i ] Φ i ( t t ) d t i = a , m ,

Metrics