Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, Appl Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  2. J. D. Klett, Appl. Opt. 22, 514 (1983).
    [CrossRef] [PubMed]
  3. R. S. Bonner, W. J. Lentz, “The Visioceilometer; A Portable Cloud Height and Visibility Indicator,” ASL-TR-0042 (1979).
  4. W. J. Lentz, “The Visioceilometer: A Portable Visibility and Cloud Ceiling Height Lidar,” ASL-TR-0105 (1982).

1983 (1)

1981 (1)

J. D. Klett, Appl Opt. 20, 211 (1981).
[CrossRef] [PubMed]

Bonner, R. S.

R. S. Bonner, W. J. Lentz, “The Visioceilometer; A Portable Cloud Height and Visibility Indicator,” ASL-TR-0042 (1979).

Klett, J. D.

Lentz, W. J.

R. S. Bonner, W. J. Lentz, “The Visioceilometer; A Portable Cloud Height and Visibility Indicator,” ASL-TR-0042 (1979).

W. J. Lentz, “The Visioceilometer: A Portable Visibility and Cloud Ceiling Height Lidar,” ASL-TR-0105 (1982).

Appl Opt. (1)

J. D. Klett, Appl Opt. 20, 211 (1981).
[CrossRef] [PubMed]

Appl. Opt. (1)

Other (2)

R. S. Bonner, W. J. Lentz, “The Visioceilometer; A Portable Cloud Height and Visibility Indicator,” ASL-TR-0042 (1979).

W. J. Lentz, “The Visioceilometer: A Portable Visibility and Cloud Ceiling Height Lidar,” ASL-TR-0105 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Results of applying the algorithm to a vertical profile through multiple cloud layers. The top panel shows σ(r), and the bottom panel shows S(r). The rms difference between Sm (r) and Sc (r) over the range r0 to rm is 3.4 × 10−4.

Fig. 2
Fig. 2

Results of applying the algorithm to a vertical profile through multiple cloud layers. The top panel shows σ(r), and the bottom panel shows S(r). The rms difference between Sm (r) and Sc (r) over the range r0 to rm is 4.4 × 10−5.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = P T c τ 2 A β ( r ) r 2 exp [ 2 0 r σ ( r ) d r ] ,
C 1 = P T c τ 2 A .
β = C 2 σ k .
P ( r ) = C 1 C 2 σ k ( r ) r 2 exp [ 2 0 r σ ( r ) d r ] .
S ( r ) = ln [ r 2 P ( r ) ] .
S ( r ) = ln ( C 1 C 2 ) + k ln [ σ ( r ) ] 2 0 r σ ( r ) d r
S 0 = 2 0 r 0 σ ( r ) d r .
S ( r ) = ln ( C 1 C 2 ) + S 0 + k ln [ σ ( r ) ] 2 r 0 r σ ( r ) d r .
σ ( r ) = exp { [ S ( r ) S ( r 0 ) ] / k } 1 σ ( r 0 ) 2 k r 0 r exp { [ S ( r ) S ( r 0 ) ] / k } d r , r r 0 ,
σ ( r ) = exp { [ S ( r ) S ( r f ) ] / k } 1 σ ( r f ) + 2 k r r f exp { [ S ( r ) S ( r f ) ] / k } d r , r r f .
S c ( r ) = S 0 + k ln [ σ ( r ) ] 2 r 0 r σ ( r ) d r .
S 0 = 2 σ ( r 0 ) r 0 .
D = [ r 0 r f ( S m S c ) 2 d r r f r 0 ] 1 / 2 .

Metrics